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Overview

I Neural networks used in computer vision are vulnerable to
perturbations of their input specially crafted to cause
misclassification, called adversarial attacks. These perturbations
are invisible to the human eye [1]

I To date the most popular and effective defence against adversarial
attacks is to train networks with adversarial images, called
adversarial training (AT) [2]. However AT has not scaled well to
very large networks and datasets, such as on ImageNet-1k.

I Instead we advocate training with input-gradient regularization, in
which networks are penalized for having large gradients. We
motivate input gradient regularization with theoretical lower bounds
on the minimum distance necessary to adversarially perturb an
image.

I When implemented with finite differences, input gradient
regularization scales readily to larger regimes, avoiding ‘double
backprop’.

Theoretical motivation: attack bounds from Taylor expansion

Adversarial attacks are found by
minimizing the perturbation v
about an image x, such that the
image is misclassified. If a
network and loss `(x) are
L-Lipschitz, then the loss can be
bounded above by

`(x + v) ≤ `(x) + L‖v‖ (1)
For some losses, there is a
constant `0 that determines
whether or not the classification is
correct. x x + v
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Suppose then, there is a minimum adversarial perturbation `(x+v) = `0.
Using (1), the minimum adversarial distance is bounded below by

‖v‖ ≥ max{`0 − `(x), 0}
L

(L-bound)

Unfortunately the Lipschitz constant of a network is a global quantity,
and hard to estimate in general. If instead the network is differentiable,
we can derive a tighter bound using local gradient information, provided
we can estimate the maximum curvature C:

‖v‖2 ≥
1

C

(
−‖∇ `(x)‖2 +

√
‖∇ `(x)‖22 + 2C max {`0 − `(x), 0}

)
(C-bound)

Interpretation: use input gradient regularization

What do (L-bound) and (C-bound) say heuristically?
I The loss gap, `0− `(x), between the misclassification threshold and

the loss at the image, should be large. This is exactly what
standard already does.

I The gradient of the loss, with respect to the input image, should be
small. Since the Lipschitz constant of a network L is the maximum
gradient over all inputs, small gradients should help bound
(L-bound). Moreover locally small gradients help bound (C-bound).

I The network’s maximum curvature C should be small. This is hard
to penalize directly, however we shall see that finite difference
approximations of the gradient regularizer can implicitly penalize for
large curvature.

This suggests training a NN f (x;w) with input gradient regularization

min
w

E
(x,y)∼P

[
L(f (x;w), y) + λ

2
‖∇xL(f (x;w), y)‖2∗

]
Input gradient regularization is not new to the NN community: it is
commonly used in both training of autoencoders and GANs. It has
been attempted in the adversarial robustness community in the past
but experimental results were mixed.
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Figure: Theoretical minimum lower bound on adversarial distance for ImageNet-1k,
on networks with ‘smooth ReLU’ activation functions. Defended networks trained
with λ = 0.1, penalized with squared `2 norm gradient.

Implementation: finite differences are fast

We approximate the gradient regularization term with finite differences
rather than using double backprop. Let d be the normalized input
gradient direction: d = ∇x `(x)/‖∇x `(x)‖2. Then

‖∇x `(x)‖22 ≈
(
`(x + hd)− `(x)

h

)2

The error of this approximation is proportional to the curvature; thus a
finite difference approximation also penalizes curvature implicitly.

Experimental results: adversarial robustness that scales

We train with gradient regularization, and attack models with a host of
adversarial attacks [3]
I We obtain similar robustness results compared to the current

state-of-the-art on CIFAR-10 [2]
I However unlike other reported methods, ours scales to

ImageNet-1k: we can train adversarially robust models in just over
a day on four consumer grade GPUs

I Experimental results show that as implemented here, gradient
regularization does not lead to “gradient obfuscation” [4]
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Figure: `∞ norm adversarial attacks on CIFAR-10

Table: Adversarial robustness statistics, measured in the `∞ norm. Top1 error is
reported on CIFAR-10; Top5 error on ImageNet-1k. We report statistics using the
best adversarial attack on a per-image basis.

% clean
error

% error at mean
distance

training
time (hours)ε = 2

255 ε =
8
255

CIFAR-10
Undefended 4.36 70.82 98.94 6.62e−3 2.06
Madry et al (7-step AT) 16.33 22.86 46.02 4.07e−2 12.10
squared `1 norm, λ = 0.1 6.45 24.92 70.41 2.35e−2 5.22
squared `1 norm, λ = 1 9.02 18.47 58.69 3.34e−2 5.15
ImageNet-1k
Undefended 6.94 90.21 98.94 3.94e−3 20.30
squared `2 norm, λ = 0.1 7.66 70.56 97.53 7.96e−3 32.60
squared `2 norm, λ = 1 10.26 52.79 95.93 9.95e−3 33.87

References

[1] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J.
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. CoRR, abs/1312.6199,
2013.

[2] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. CoRR, abs/1706.06083, 2017.

[3] Jonas Rauber, Wieland Brendel, and Matthias Bethge. Foolbox v0.8.0: A Python toolbox to
benchmark the robustness of machine learning models. CoRR, abs/1707.04131, 2017.

[4] Nicholas Carlini and David A. Wagner. Adversarial examples are not easily detected: Bypassing
ten detection methods. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and
Security, AISec@CCS 2017, Dallas, TX, USA, November 3, 2017, pages 3–14, 2017.

[5] Chris Finlay and Adam M. Oberman. Scaleable input gradient regularization for adversarial
robustness. CoRR, abs/1905.11468, 2019.


