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Overview Results & Discussion

» Adversarial attacks for image classification are small perturbations
to images that are designed to cause misclassification by a model
[1].

» Adversarial attacks formally correspond to an optimization problem:
find a minimum norm image perturbation, constrained to cause

misclassification
minignize 0]

. (1)
subject to argmax f(z + 9) # c.
where f(z) is the model’s prediction, and c is the correct label.
» However, to date, no gradient-based attacks have used best
practices from the optimization literature to solve this constrained

minimization problem.
» We design a new untargeted attack, based on these best practices,
using the well-regarded logarithmic barrier method [2].
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Algorithmic outline
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Rather than solve (1), the LogBarrier attack aims for an approximate

solution through (3), as follows.
1. Initialize with a mis-classified image, far from the original image.
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The LogBarrier attack achieves similar or better attack distances
than current state-of-the-art attacks on standard datasets

The LogBarrier attack performs significantly better on challenging
Images (those that require large perturbations for misclassification)
The LogBarrier attack performs well on adversarially defended
models (through adversarial training [3]): the distance needed to
perturb all images is significantly smaller than other attacks.
Although the LogBarrier attack uses gradients, we show it
overcomes gradient obfuscation, a common pitfall of other
gradient-based attacks

Comparison of attacks at specified perturbation size

Table: Percent misclassification of the networks at a specified perturbation size, for
attacks measured in /,. Because we are measuring the strength of adversarial
attacks, at a given adversarial distance, a higher percentage misclassified is better.
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Attack curves measured in /.., on MNIST and CIFAR10 networks. Two
types of networks are compared: an undefended network, and a de-
fended network (denoted (D)), trained using the same architecture as
the undefended network with adversarial training. The LogBarrier attack
requires a smaller adversarial distance to attack all images, compared

to IFGSM.
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