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Background: Deep learning and AI

● Artificial intelligence (AI) is 
loosely defined as intelligence 
exhibited by machines, on 
specific tasks

● In recent years, deep learning 
algorithms have performed 
remarkably well on problems 
which were thought to be 
intractable

O Vinyals, A Toshev, S Bengio and D Erhah. 
“Show and Tell: A neural image caption 
generator”, CVPR 2015.
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Background: Deep learning and AI

● Due to the curse of 
dimensionality, theory says 
that accurate function 
interpolation (eg image 
captioning) is impossible

● But with deep learning, we 
have very impressive 
practical results showing it is 
possible

O Vinyals, A Toshev, S Bengio and D Erhah. 
“Show and Tell: A neural image caption 
generator”, CVPR 2015.
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Background: Deep learning and Machine 
Learning

● Machine learning (ML) is a 
well established field

● ML has theory: convergence 
proofs, error bounds, 
theoretical guarantees

● Deep learning is a recent 
branch of ML, and uses deep 
neural networks

● But: deep learning lacks 
theory, even though in 
practice it can solve much 
larger problems than ML 
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Background: Deep learning used 
without theoretical guarantees

● Deep learning algorithms are 
now common place:
● Computer vision
● natural language processing
● Robotics
● and on and on...

● But lack of theory is a 
problem. We don’t know why 
it works so well.

“It is not clear that the existing AI paradigm 
is immediately amendable to any sort of 
software engineering validation and 
verification. This is a serious issue, and is a 
potential roadblock to DoD’s use of these 
modern AI systems, especially when 
considering the liability and accountability 
of using AI”

-JASON report
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Background: Deep learning used 
without theoretical guarantees

Moreover, when deep learning algorithms fail we don’t know 
why.

The Guardian, March 19 2018 Nature, July 18 2018

https://www.theguardian.com/technology/2018/mar/19/uber-self-driving-car-kills-woman-arizona-tempe
https://www.nature.com/articles/d41586-018-05707-8
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This talk: Adversarial examples in image 
classification

● In image classification, we are given a training set of N images 
xi with labels yi. Each image belongs to one of K classes. 

● Images are typically scaled so that the image space X is the 
unit box – pixels values are in [0,1]. 

● Label space is embedded in the probability simplex.
● For example if image has class k, then we want to map image 

to label ek

● The task is to learn a map f:X!       Y
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Deep neural nets

● In deep learning the map f:X!       Y is a deep neural net

● A composition of n linear functions Wk alternating with an 
element wise non-linearity σ:

f(X) = σ(Wn σ(Wn-1  ...σ(W1 X)))
● Common choice for σ is σ(x) = max(x, 0). 

● In this case, f is a piece-wise linear function.

● Each σ(Wn-1(·)) is called a layer. Since there are so many layers, the 
network is said to be “deep”
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Loss function minimization

● f is learned by minimizing the expectation of a loss function L which 
measures difference between model prediction f(x) and true label y 
over a distribution of images and labels

E[L(f(x),y)] ≈ (1 ⁄ N)∑i L(f(xi),yi)
● In image classification L is usually the Kullback-Leibler divergence
● For lack of better alternatives, usually just minimized with stochastic 

gradient descent
● Minimization is done over layer parameters of the linear functions 

(matrices and biases). Gradient wrt parameters is computed with 
automatic differentiation (a nice way to apply the chain rule)

● Only since ~2012 or so has this been computationally feasible, using 
GPUs
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Example: ImageNet

Proving ground for image 
classification algorithms is the 
ImageNet dataset

● Has 2184 classes

● Training set comprises  ~14 
million images

● Colour images, 
d = 3x256x256 = 196,608

● Current state-of-the-art is ~3.5% 
top5 error

● But this is still considered an 
academic dataset...
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That’s nice, but...

Not long after deep learning 
algorithms began beating 
traditional ML in image 
classification, Goodfellow et al1 
noticed that there are 
perturbations which will cause 
a network to misclassify.
● These perturbations are 

imperceptible to humans

1 I Goodfellow, J Shlens and C Szegedy. “Explaining and harnessing adversarial 
examples”, 2014. arXiv:1412.6572
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Adversarial examples

These images are called adversarial examples, caused by 
adversarial perturbations (sometimes called adversarial attacks).
● Not just any perturbation will do. For example deep neural nets 

are generally robust to Gaussian noise
● Perturbation must be worst case in a certain sense (more on 

this later...)
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Adversarial examples

Not just an academic exercise.

Eykholt et al, “Robust Physical-World Attacks on 
Deep Learning Visual Classification”. CVPR 2018.
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Adversarial examples

Not just an academic exercise.

Sharif et al, “Accessorize to a Crime: Real and 
Stealthy Attacks on State-of-the-Art Face 
Recognition”. CCS 2016.
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Adversarial examples

Not just an academic exercise.

J Su, D Vargas and K Sakurai. “One Pixel Attack 
for Fooling Deep Neural Networks”, 2017. 
arXiv:1710.08864
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Problems posed by adversarial 
examples

1. Is it possible to detect adversarial examples?
● Carlini & Wagner (2017): No. Can always create adversarial 

examples which are undetectable
● Us: Yes, mostly. Most adversarial attacks are detectable, and 

those that are not come at a price

2. Is it possible to defend deep neural networks against 
adversarial examples, without losing model accuracy?

● Tsipras et al, “Robustness May Be at Odds with Accuracy”. 
ICLR 2019

● Us: yes, to varying degree. Frame adversarial robustness in 
terms of Calculus of Variations and regularization.
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Attack detection

● In 2017, eight papers published claiming to be able to detect 
adversarial attacks
● Most methods used statistics of adversarial images, eg PCA of 

attacked images
● Most models ignored the model itself
● In terms of game theory, the detector moves after the attacker

● Claims of successful attack detection were premature: Carlini & 
Wagner (2017) dismantled all published detection methods. 
● Were able to generate undetectable adversarially perturbed images, 

using a modified loss function: require image to be misclassified and 
minimize detection metric

● In terms of game theory, Carlini & Wagner are moving after the 
detector
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Attack detection

Our proposal: the vulnerability of an image to attack is a proxy 
for attack detection.
● Pessimistic: if the model can be attacked, it will be.
● An model is vulnerable to attack if a small perturbation 

drastically changes the loss function. A Taylor series argument 
(coming later) shows

L(x+εd) = L(x) + ε ‖∇ L(x)‖* + O(ε2), d worst case
● Thus images with large gradient are vulnerable to attack.
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Attack detection: works?

Measure size of gradient on clean (unperturbed) images, and 
compare with attacked images
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Clean images Gradient attack Boundary attack

Clean images have small gradients; attacked images have large 
gradients.
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Attack detection: works?

● Choose a threshold such that 
only 5% of clean images are 
incorrectly classified as being 
attacked.
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Attack detection: works?

● Choose a threshold such that 
only 5% of clean images are 
incorrectly classified as being 
attacked.

● Then attack, penalizing for 
detection (large gradients) – 
try to evade detection

● It is possible to avoid 
detection, but at the cost of 
greater adversarial distance
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Attack detection suggests a defence

● It is difficult to evade detection, using large gradients as a 
proxy, while also keeping adversarial distance small.
● From game theory perspective, knowing this attack detection 
method does not really help the attacker
● This suggests a defence: not only should the model loss be 
small, so should it’s gradient
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Adversarial defences: a brief history

● On undefended models, the best attacks (measured by 
distance to original image) are gradient based

● Lots of early proposed adversarial defence methods appeared 
to be successful, by “obfuscating” (hiding) the model gradient

● However, later it was shown that gradient-free methods (“black 
box” attacks, especially Boundary attack) were able to easily 
circumvent these obfuscation defences

● Thus the adversarial community is skeptical when you claim 
that “you just need to make the gradients small”

● Lesson: prove your proposed defence on both gradient and 
gradient-free attacks 
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Adversarial training

To date, the adversarial defence with the most success is 
adversarial training.
● Train the network on perturbed images. The network should 

hopefully learn to also recognize these images.
● Formulated as a minmax problem:

minf maxd E[L(x+d)]

st  ‖d‖ ≤ ε
(I’ve suppressed writing f and y for brevity)

● But this is even harder to solve than the original problem.
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Adversarial training

● Instead, on a per image basis, maxd L(x+d) st  ‖d‖ ≤ ε is approximated:

maxd L(x+d)≈maxd L(x) + d·∇L(x)
● RHS optimality is attained when d·∇L(x)=ε ‖∇L(x)‖*

● When 2-norm is used, set d=ε ∇L(x) ∕ ‖∇L(x)‖
● People also care about the max-norm – arguably it more closely 

resembles the eye-norm. 

Set d = ε sign(∇L(x))

Thus in adversarial training, people solve the problem

minf E[L(x+d)]

where d is defined as the worst-case perturbation defined above, on a per-image 
basis
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Adversarial training

Problems with adversarial training:
● how big should ε be? 
● In practice adversarially robust models require fairly large ε, 

which harms test accuracy
● Tsipras et al, “Robustness May Be at Odds with Accuracy”. 

ICLR 2019
● Maybe instead of approximating maxd L(x+d) with one gradient 

step, you should take several steps? How many?
● If you take many inner steps (standard practice is 20), the 

optimization problem quickly becomes intractable – goes from 
taking say 12 hours to solve, to a week



27

Calculus of variations to the rescue

We interpret adversarial training as 
Total Variation (TV) regularization 
● Rudin-Osher-Fatemi (1992)
● Want to minimize a functional

J[f] = E[L(f) + λ R(f)]
● The regularizer R is chosen to 
enforce desirable properties on f
● For example TV regularization for 
piecewise smooth functions (recall 
standard neural nets are piecewise 
linear!)
● With TV regularization

R(f) = ‖∇f(x)‖
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Calculus of variations to the rescue

We will also use Lipschitz 
regularization, used in image in-
painting
● Sapiro-Casselles (2000)
● Regularizer is

R(f) = Lip(f) = max ‖∇f(x)‖
● Used to fill in missing data
● Equivalent to solving Infinty-

Laplace (Oberman 2004)
● Can be shown Lipschitz 

regularization leads to a proof of 
model generalization in deep 
networks (Oberman-Calder 2018)



29

Adversarial training as TV regularization

● Recall L(x+εd) ≈ L(x) + ε ‖∇L(x)‖* when d an optimal 
adversarial perturbation

● Take expectation of RHS, get

E[L(x) + ε ‖∇L(x)‖*]
which is precisely TV regularization of the loss

● TV regularization promotes small gradients on and near the 
training data, exactly what we need to enforce adversarial 
robustness

● Note that if d is not optimal, get L(x+εd) ≈ L(x) + ε d·∇L(x)
and so taking expectations here, we’d expect random attack 
vectors to cancel out (if they are mean zero)
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Adversarial robustness and the 
Lipschitz constant

There is work showing that the Lipschitz constant of a model is 
related to adversarial robustess (Weng et al, 2017)
● Lipschitz constant gives a certifiable minimum adversarial 

perturbation needed
● It’s easy (but not well known in deep learning community) that 

the Lipschitz constant can be underestimated by simply taking 
max over available data

● Lip(f) ≥ max‖∇f(x)‖
● Thus, in addition to TV regularization, we propose also training 

models with Lipschitz regularization:

minf E[L(x) + ε‖∇L(x)‖ ] + λ max‖∇L(x)‖
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How to compute neural net mixed 
derivatives quickly

To minimize this functional, need to

(1) compute norm gradient of loss with respect to image

(2) Compute mixed 2nd order partials of loss with respect to 
model parameters

As of 2019 it is not tractable to compute 2nd order partials of a 
neural network with automatic differentiation, especially during 
the optimization procedure
● Our solution: compute (1) with finite differences, then use 

automatic differentiation for (2)
● We observe no significant increase in model training time with 

this approach
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Results

We are able to fine tune the regularization coefficients to achieve 
comparable adversarial robustness to current state-of-the-art, 
but we do not lose test accuracy

Table 1. Results on CIFAR-10 dataset. % error reported, lower is better.
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Results
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Results

Can see the effect of over regularization
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Results

We can also measure the size of the regularization terms, 
E[‖∇L(x)‖*] and max ‖∇L(x)‖*

● Empirically, small regularization terms correspond to better 
robustness
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End
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