
Training neural ODEs for density estimation

Chris Finlay

in collaboration with
Jörn-Henrik Jacobsen, Levon Nurbekyan and Adam Oberman

Paper: “How to train your Neural ODE”

IPAM HJB II
April 23, 2020

https://arxiv.org/abs/2002.02798


0.

Table of Contents

Background
Density estimation with Normalizing flows
Neural ODEs

FFJORD: Neural ODEs + Normalizing flows

Regularized neural ODEs

Results

Chris Finlay Training neural ODEs for density estimation IPAM HJB II April 23, 2020 1 / 22



1. Background Density estimation with Normalizing flows

Density estimation

Training data

p(dog) = ?

Density estimation is a fundamental problem
in ML

I Given data {X1, . . . ,Xn} drawn from an
unknown distribution p(x), estimate p

Typically done through maximum
log-likelihood

I select a family of models pθ
I solve maxθ

∑
log pθ(Xi )

Two issues arise

1. How to parameterize pθ?

2. How to sample from the learned
distribution pθ? Ie, generate new data?

Chris Finlay Training neural ODEs for density estimation IPAM HJB II April 23, 2020 2 / 22



1. Background Density estimation with Normalizing flows

Density estimation

Training data

p(dog) = ?

Density estimation is a fundamental problem
in ML

I Given data {X1, . . . ,Xn} drawn from an
unknown distribution p(x), estimate p

Typically done through maximum
log-likelihood

I select a family of models pθ
I solve maxθ

∑
log pθ(Xi )

Two issues arise

1. How to parameterize pθ?

2. How to sample from the learned
distribution pθ? Ie, generate new data?

Chris Finlay Training neural ODEs for density estimation IPAM HJB II April 23, 2020 2 / 22



1. Background Density estimation with Normalizing flows

Density estimation

Training data

p(dog) = ?

Density estimation is a fundamental problem
in ML

I Given data {X1, . . . ,Xn} drawn from an
unknown distribution p(x), estimate p

Typically done through maximum
log-likelihood

I select a family of models pθ
I solve maxθ

∑
log pθ(Xi )

Two issues arise

1. How to parameterize pθ?

2. How to sample from the learned
distribution pθ? Ie, generate new data?

Chris Finlay Training neural ODEs for density estimation IPAM HJB II April 23, 2020 2 / 22



1. Background Density estimation with Normalizing flows

Density estimation and generation with normalizing flows

Today, the gospel of Normalizing Flows [TT13, RM15]

Density estimation

I suppose we have an invertible map fθ : X 7→ Z

I Change of variables applied to log-densities:

log pθ(x) = log pN (fθ(x)) + log det

[
dfθ(x)

dx

]
(1)

I here N is the standard normal distribution

Generation

I sample z ∼ N
I compute x = f −1

θ (z)

Chris Finlay Training neural ODEs for density estimation IPAM HJB II April 23, 2020 3 / 22



1. Background Density estimation with Normalizing flows

That’s nice, but. . .

Unfortunately this approach has two difficult
problems:

1. Constructing invertible deep neural
networks is hard. (but see eg [CBD+19])

2. Need to compute Jacobian determinants.
Also hard.

Both of these tasks can be made easier by
putting structural constraints on the model.
However these constraints tend to degrade
model performance.

Is there an easier way?

Chris Finlay Training neural ODEs for density estimation IPAM HJB II April 23, 2020 4 / 22



1. Background Density estimation with Normalizing flows

That’s nice, but. . .

Unfortunately this approach has two difficult
problems:

1. Constructing invertible deep neural
networks is hard. (but see eg [CBD+19])

2. Need to compute Jacobian determinants.
Also hard.

Both of these tasks can be made easier by
putting structural constraints on the model.
However these constraints tend to degrade
model performance.

Is there an easier way?

Chris Finlay Training neural ODEs for density estimation IPAM HJB II April 23, 2020 4 / 22



1. Background Neural ODEs

Neural ODEs

Source: [CRB+18],
Figure 1

Neural ODEs [HR17, CRB+18] are
generalizations of Residual Networks, where
layer index t is a continuous variable called
“time”.

I Compare one layer of a Residual Network

x t+1 = x t + vθ(x t , t)

I with an Euler step discretization of the
ODE ẋ = vθ(x , t), with step size τ

x t+1 = x t + τvθ(x t , t)

Chris Finlay Training neural ODEs for density estimation IPAM HJB II April 23, 2020 5 / 22



1. Background Neural ODEs

Neural ODEs

Source: [CRB+18],
Figure 1

I Rather than fixing the number of layers
(time steps) in the ResNet beforehand

I Solve the ODE{
ẋ = vθ(x , t)

x(0) = x0

(2)

with an adaptive ODE solver, up to some
end time T . Here x0 is the input to the
“network”

I The function so defined is the solution
map:

fθ(x0) := x(T ) = x0 +

∫ T

0
vθ(x(s), s) ds

Benefits: memory savings; tradeoff between accuracy and speed
Chris Finlay Training neural ODEs for density estimation IPAM HJB II April 23, 2020 6 / 22



1. Background Neural ODEs

Aside: Differentiating losses of neural ODEs

Suppose we have a loss function L(x(T )) which depends only on
the final state x(T ). How do we differentiate wrt θ?

I Naive approach: backpropagate through the computation
graph of the ODE solver

I Optimal control: use sensitivity analysis [PMB+62]. The
gradient dL

dθ is given by

dL(x(T ))

dθ
= µ(0)

where µ, λ and x solve the following ODE (run backwards in
time) 

µ̇ = −λT d
dθvθ(x(t), t), µ(T ) = 0

λ̇ = −λT∇xvθ(x(t), t), λ(T ) = dL(x(T ))
dx(T )

ẋ = −vθ(x(t), t), x(T ) = xT

Chris Finlay Training neural ODEs for density estimation IPAM HJB II April 23, 2020 7 / 22



2. FFJORD: Neural ODEs + Normalizing flows

Neural ODEs and Normalizing Flows

We can overcome the two difficulties of normalizing flows by
exploiting properties of dynamical systems

1. If vθ is Lipschitz, then the solution map is invertible!
(Picard-Lindelöf)

f −1
θ (x(T )) = x(T ) +

∫ 0

T
vθ(x(s), s) ds

I ie just need to solve the backwards dynamics{
ẋ = −vθ(x , t)

x(0) = xT
(3)

Chris Finlay Training neural ODEs for density estimation IPAM HJB II April 23, 2020 8 / 22



2. FFJORD: Neural ODEs + Normalizing flows

Neural ODEs and Normalizing Flows

We can overcome the two difficulties of normalizing flows by
exploiting properties of dynamical systems

2. Log-determinants (of particles solving the ODE) have a
beautiful time derivative [Vil03, p. 114]

d

ds
log det

[
dx(s)

dx0

]
= div (v) (x(s), s)

where div (·) is the divergence operator, div (f ) =
∑

i
∂fi
∂xi

I ie

log det

[
dfθ(x)

dx

]
=

∫ T

0

div (v) (x(s), s)ds

Chris Finlay Training neural ODEs for density estimation IPAM HJB II April 23, 2020 9 / 22



2. FFJORD: Neural ODEs + Normalizing flows

FFJORD: density estimation

Putting these two observations together, we arrive at the FFJORD
algorithm (Free-form Jacobian Of Reversible Dynamics) [GCB+19]

Density estimation
To learn the distribution pθ, solve the following log-likelihood
optimization problem

max
θ

∑
i

log pN (zi (T )) +

∫ T

0
div (vθ) (zi (s), s)ds

where zi (s) satisfies the ODE{
żi (s) = vθ(zi (s), s)

zi (0) = xi

Chris Finlay Training neural ODEs for density estimation IPAM HJB II April 23, 2020 10 / 22



2. FFJORD: Neural ODEs + Normalizing flows

That’s nice, but. . .

Isn’t it really hard to compute the divergence
term

div (vθ) (x , s) =
∑
j

∂v jθ(x , s)

∂xj

in high dimensions?

Chris Finlay Training neural ODEs for density estimation IPAM HJB II April 23, 2020 11 / 22



2. FFJORD: Neural ODEs + Normalizing flows

Trace estimates

I Divergence is the trace of the Jacobian
∇xvθ(x , t)

I So we can use trace estimates to
approximate

div (vθ) (x , s) = Tr(∇xvθ(x , t))

= Eη
[
ηT∇xvθ(x , t)η

]
where η ∼ N (0, 1)

I this can be computed quickly with reverse
mode automatic differentiation

Chris Finlay Training neural ODEs for density estimation IPAM HJB II April 23, 2020 12 / 22



2. FFJORD: Neural ODEs + Normalizing flows

FFJORD: generation

FFJORD [GCB+19] generation (density sampling) is simple

Generation
Sample z ∼ N , and solve{

ẋ(s) = −vθ(x(s), s)

x(0) = z

Ie, x = z +
∫ 0
T vθ(z(s), s) ds

Chris Finlay Training neural ODEs for density estimation IPAM HJB II April 23, 2020 13 / 22



3. Regularized neural ODEs

Need for regularity

target

x

source
A generic solution

FFJORD is promising, but there are no
constraints placed on the paths the particles
take

I As long as source (data) distribution is
mapped to target (normal) distribution,
the log-likelihood is maximized

I ie solutions are not unique

I If the particle paths are “wobbly” the
adaptive ODE solver has to take many
tiny steps, with many function
evaluations. This is time consuming

Chris Finlay Training neural ODEs for density estimation IPAM HJB II April 23, 2020 14 / 22



3. Regularized neural ODEs

Solver is slowed by number of function evaluations

Function evaluations vs
Jacobian norm

I the number of function evaluations (time
steps) taken by the solver is related to the
total derivative

dv(x(t), t)

dt
= [∇v(x(t), t)] v(x(t), t)

+
∂

∂t
v(x(t), t)

I In other words, if we can control the size
of v and ∇v , we can reduce the number
of function evaluations (time steps) taken
by the ODE solver

Chris Finlay Training neural ODEs for density estimation IPAM HJB II April 23, 2020 15 / 22



3. Regularized neural ODEs

Proposal: regularize objective to decrease # of FEs

0

1

t
p(

z(
x,

T)
)

target

x

p(
x)

source
OT map

Add two terms to the objective to encourage
regularity of trajectories:

I
∫ T

0 ‖vθ(x(s), s)‖2 ds, the kinetic energy.
This is closely related to the Optimal
Transport cost between distributions
(Benamou-Brenier)

I
∫ T

0 ‖∇xvθ(x(s), s)‖2
F ds, a Frobenius

norm penalty on the Jacobian

I Frobenius norms can be computed again
with trace estimate:

‖A‖2
F = Tr(ATA) = Eη

[
ηTATAη

]
= E

[
‖Aη‖2

]
ie can recycle computations from
divergence estimate

Chris Finlay Training neural ODEs for density estimation IPAM HJB II April 23, 2020 16 / 22



3. Regularized neural ODEs

Proposal: regularize objective to decrease # of FEs

0

1

t
p(

z(
x,

T)
)

target

x

p(
x)

source
OT map

Add two terms to the objective to encourage
regularity of trajectories:

I
∫ T

0 ‖vθ(x(s), s)‖2 ds, the kinetic energy.
This is closely related to the Optimal
Transport cost between distributions
(Benamou-Brenier)

I
∫ T

0 ‖∇xvθ(x(s), s)‖2
F ds, a Frobenius

norm penalty on the Jacobian

I Frobenius norms can be computed again
with trace estimate:

‖A‖2
F = Tr(ATA) = Eη

[
ηTATAη

]
= E

[
‖Aη‖2

]
ie can recycle computations from
divergence estimate

Chris Finlay Training neural ODEs for density estimation IPAM HJB II April 23, 2020 16 / 22



4. Results

Test log-likelihood vs wall clock time

0 20 40 60
Wall Clock Time (hours)

0.95

1.00

1.05

1.10

1.15

1.20

Bi
ts

/d
im

vanilla FFJORD
FFJORD RNODE (ours)

MNIST

0 10 20 30 40 50
Wall Clock Time (hours)

3.4

3.6

3.8

4.0

4.2

4.4

4.6

Bi
ts

/d
im

vanilla FFJORD
FFJORD RNODE (ours)

CIFAR10

Chris Finlay Training neural ODEs for density estimation IPAM HJB II April 23, 2020 17 / 22



4. Results

Ablation study: regularity measures on MNIST

0 25 50 75 100
Epoch

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
ea

n 
Ja

co
bi

an
 F

ro
be

ni
us

 n
or

m

no regularization
kinetic penalty only
Jacobian penalty only
RNODE (both penalties)

Jacobian norm vs epoch

0 25 50 75 100
Epoch

4

6

8

10

12

14

16

M
ea

n 
ki

ne
tic

 e
ne

rg
y

no regularization
kinetic penalty only
Jacobian penalty only
RNODE (both penalties)

Kinetic energy vs epoch Function evals vs epoch

Chris Finlay Training neural ODEs for density estimation IPAM HJB II April 23, 2020 18 / 22



4. Results

Some numbers

Chris Finlay Training neural ODEs for density estimation IPAM HJB II April 23, 2020 19 / 22



4. Results

Some pictures: MNIST & CIFAR10

Chris Finlay Training neural ODEs for density estimation IPAM HJB II April 23, 2020 20 / 22



4. Results

Some bigger pictures: ImageNet64

Real ImageNet64 images Generated ImageNet64 images
(FFJORD RNODE)

Chris Finlay Training neural ODEs for density estimation IPAM HJB II April 23, 2020 21 / 22



4. Results

Comments

I The Jacobian norm penalty can be viewed as a continuous
time analogue of layer-wise Lipschitz regularization in
ResNets. This helps ensure particle paths do not cross, and
helps keep networks numerically invertible

I Without regularization, it is very difficult to train neural ODEs
with fixed step-size ODE solvers. Need adaptive ODE solvers

I However with regularization, neural ODEs can be trained with
fixed step-size ODE solvers (eg a four stage Runge-Kutta
scheme)

I On large images (> 64 pixel width) vanilla FFJORD will not
train: adaptive solver’s time step underflows

Chris Finlay Training neural ODEs for density estimation IPAM HJB II April 23, 2020 22 / 22



5. References

References I

TQ Chen, J Behrmann, D Duvenaud and JH Jacobsen, Residual Flows for
Invertible Generative Modeling, NeurIPS 2019: 9913–9923.

TQ Chen, Y Rubanova, J Bettencourt and D Duvenaud, Neural Ordinary
Differntial Equations, NeurIPS 2018: 6572 – 6583.

W Grathwohl, RT Chen, J Bettencourt, I Sutskever and D Duvenaud,
FFJORD: Free-Form Continuous Dynamics for Scalable Reversible
Generative Models, ICLR 2019.

E Haber and L Ruthotto, Stable architectures for deep neural networks,
Inverse Problems, 34 (2017), no. 1, 014004.

L Pontryagin, EF Mischenko, VG Boltyanskii and RV Gamkrelidze, The
mathematical theory of optimal processes, 1962.

RJ Rezende and S Mohamed, Variational Inference with Normalizing
Flows, ICML 2015: 1530–1538.

Chris Finlay Training neural ODEs for density estimation IPAM HJB II April 23, 2020 23 / 22



5. References

References II

EG Tabak and CV Turner, A family of nonparametric density estimation
algorithms, Communication on Pure and Applied Mathematics, 66 (2013),
no. 2, 145–164.

C Villani, Topics in Optimal Transport, Graduate studies in mathematics.
AMS 2003, ISBN 9780821833124.

Chris Finlay Training neural ODEs for density estimation IPAM HJB II April 23, 2020 24 / 22


	Background
	Density estimation with Normalizing flows
	Neural ODEs

	FFJORD: Neural ODEs + Normalizing flows
	Regularized neural ODEs
	Results
	Appendix
	References


