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A B S T R A C T

In this work we revisit gradient regularization for adversarial robustness with some new ingredients. First,
we derive new per-image theoretical robustness bounds based on local gradient information. These bounds
strongly motivate input gradient regularization. Second, we implement a scaleable version of input gradient
regularization which avoids double backpropagation: adversarially robust ImageNet models are trained in 33 h
on four consumer grade GPUs. Finally, we show experimentally and through theoretical certification that
input gradient regularization is competitive with adversarial training. Moreover we demonstrate that gradient
regularization does not lead to gradient obfuscation or gradient masking.
. Introduction

Neural networks are vulnerable to adversarial attacks. These are
mall (imperceptible to the human eye) perturbations of an image
hich cause a network to misclassify the image (Biggio et al., 2013;
oodfellow et al., 2014; Szegedy et al., 2013). The threat posed by
dversarial attacks must be addressed before these methods can be
eployed in error-sensitive and security-based applications (Potember,
017).

Building adversarially robust models is an optimization problem
ith two objectives: (i) maintain test accuracy on clean unperturbed

mages, and (ii) be robust to large adversarial perturbations. The
resent state-of-the-art method for adversarial defence, adversarial
raining (Goodfellow et al., 2014; Madry et al., 2017; Miyato et al.,
018; Szegedy et al., 2013; Tramèr et al., 2018), in which models are
rained on perturbed images, offers robustness at the expense of test
ccuracy (Tsipras et al., 2018). Up until the recent method of Shafahi
t al. (2019), multi-step adversarial training had taken many days to
rain on large datasets (Kannan et al., 2018; Xie et al., 2018).

Assessing the empirical effectiveness of an adversarial defence re-
uires careful testing with multiple attacks (Goodfellow et al., 2018).
urthermore, existing defences are vulnerable to new, stronger attacks:
thalye et al. (2018) and Carlini and Wagner (2017a) advocate de-
igning specialized attacks to circumvent prior defences, while Uesato
t al. (2018) warn against using weak attacks to evaluate robustness.
his has led the community to develop theoretical tools to certify
dversarial robustness. Several certification approaches have been pro-
osed: through linear programming (Wong & Kolter, 2018; Wong et al.,
018) or mixed-integer linear-programming (Xiao et al., 2018); semi-
efinite relaxation (Raghunathan et al., 2018a, 2018b); randomized
moothing (Cohen et al., 2019; Li et al., 2018); or estimates of the
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E-mail addresses: christopher.finlay@mcgill.ca (C. Finlay), adam.oberman@mcgill.ca (A.M. Oberman).

local Lipschitz constant (Hein & Andriushchenko, 2017; Tsuzuku et al.,
2018; Weng et al., 2018). The latter two approaches have scaled well to
ImageNet-1k. Notably, randomized smoothing with adversarial training
has shown great promise for rigorous certification against attacks in
the 𝓁2 norm (Salman et al., 2019), although it is not yet clear how
randomized smoothing may be adapted to other norms.

In practice, certifiably robust networks often perform worse than
adversarially trained models, which in general lack theoretical guar-
antees. In this article, we work towards bridging the gap between
theoretically robust networks and empirically effective training meth-
ods. Our approach relies on minimizing a loss regularized against large
input gradients

E
(𝑥,𝑦)∼P

[

(𝑓 (𝑥;𝑤), 𝑦) + 𝜆
2
‖∇𝑥 (𝑓 (𝑥;𝑤), 𝑦)‖2∗

]

where ‖ ⋅‖∗ is dual to the one measuring adversarial attacks (for exam-
ple the 𝓁1 norm for attacks measured in the 𝓁∞ norm). Heuristically,
making loss gradients small should make gradient based attacks more
challenging.

Drucker and LeCun (1991) implemented gradient regularization
using ‘double backpropagation’, which has been shown to improve
model generalization (Novak et al., 2018). It has been used to improve
the stability of GANs (Nagarajan & Kolter, 2017; Roth et al., 2017)
and to promote learning robust features with contractive auto-encoders
(Rifai et al., 2011). While it has been proposed for adversarial attacks
robustness (Hein & Andriushchenko, 2017; Jakubovitz & Giryes, 2018;
Lyu et al., 2015; Ororbia II et al., 2017; Ross & Doshi-Velez, 2018; Roth
et al., 2018; Simon-Gabriel et al., 2018), experimental evidence has
been mixed, in particular, input gradient regularization has so far not
been competitive with multi-step adversarial training.
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In particular, the heuristic that ‘‘gradients should be small’’ has
motivated several other approaches to adversarial robustness which
were later shown to suffer from problems of gradient obfuscation (Atha-
lye et al., 2018). This is the phenomenon whereby gradients are in
some sense hidden or minimized, so that gradient-based attacks fail
to produce adversarial examples. For example, a model may be con-
structed to be non-differentiable; return a stochastic estimate of the
gradient; or have a numerically unstable method for computing gra-
dients. In each case, gradient-based attacks fail, and may give the
erroneous impression that a network is adversarially robust. Due to
this phenomenon, the community now greets adversarial robustness
methods based on notions of small gradients with a healthy dose of
skepticism. It is therefore necessary to demonstrate new methods do not
suffer from gradient obfuscation (Carlini et al., 2019), both empirically
and theoretically: empirically, by attacking models with gradient-free
methods or non-local attacks; and theoretically using tight certification
techniques.

Our main contributions in this work are the following. First, we
motivate using input gradient regularization of the loss by deriving
new theoretical robustness bounds. These bounds use the gradient of
the loss, and an estimate of the error of the linear approximation
of the loss, called the modulus of continuity. These theoretical bounds
show that small loss gradient and a small modulus of continuity are
sufficient conditions for adversarial robustness. Second, we empirically
show that input gradient regularization is competitive with standard
adversarial training (Madry et al., 2017), at a fraction of the training
time. We verify that training with gradient regularization does not lead
to gradient obfuscation, by attacking our trained models with gradient-
free methods, and through certification bounds. Finally, we scale input
gradient regularization to ImageNet-1k (Deng et al., 2009) by using
finite differences to estimate the gradient regularization term, rather
than double backpropagation (which does not scale). This allows us
to train adversarially robust networks on ImageNet-1k with only 50%
more training time than that of standard (non robust) training.

2. Adversarial robustness bounds from the loss

2.1. Background

Much effort has been directed towards determining theoretical
lower bounds on the minimum sized perturbation necessary to perturb
an image so that it is misclassified by a model. One promising approach,
proposed by Hein and Andriushchenko (2017) and Weng et al. (2018),
and which has scaled well to ImageNet-1k, is to use the Lipschitz
constant of the model. In this section, we build upon these ideas: we
propose using the Lipschitz constant of a suitable loss, designed to
measure classification errors. Additionally, we propose a tighter lower
bound which uses the local gradient information of the loss, and an
error bound on the first-order approximation of the loss.

Our notation is as follows. Write 𝑦 = 𝑓 (𝑥;𝑤) for a model which takes
input vectors 𝑥 to label probabilities, with parameters 𝑤. Let (𝑦1, 𝑦2)
be the loss and write 𝓁(𝑥) ∶= (𝑓 (𝑥,𝑤), 𝑦), for the loss of a model 𝑓 .

Finding an adversarial perturbation is interpreted as a global min-
imization problem: find the closest image to a clean image, in some
specified norm, that is also misclassified by the model

min
𝑣

‖𝑣‖ subject to 𝑓 (𝑥 + 𝑣) misclassified (1)

However, (1) is a difficult and costly non-smooth, non-convex opti-
mization problem. Instead, Goodfellow et al. (2014) proposed solving
a surrogate problem: find a perturbation 𝑣 of a clean image 𝑥 that
maximizes the loss, subject to the condition that the perturbation be
inside a norm-ball of radius 𝛿 around the clean image. The surrogate
problem is written

max
𝑣

𝓁(𝑥 + 𝑣) − 𝑐(𝑣);where 𝑐(𝑣) =

{

0 if ‖𝑣‖ ≤ 𝛿
(2)
∞ otherwise

2

The hard constraint 𝑐(𝑣) forces perturbations to be inside the norm-
ball centred at the clean image 𝑥. Ideally, solutions of this surrogate
problem (2) will closely align with solutions of the original more diffi-
cult global minimization problem. However, the hard constraint in (2)
forces a particular scale: it may miss attacks which would succeed with
only a slightly bigger norm. Additionally, the maximization problem (2)
does not force misclassification, it only asks that the loss be increased.

The advantage of (2) is that it may be solved with gradient-based
methods: present best-practice is to use variants of projected gradi-
ent descent (PGD), such as the iterative fast-signed gradient method
(Kurakin et al., 2016; Madry et al., 2017) when attacks are measured
in the 𝓁∞ norm. However, gradient-based methods are not always
effective: on non-smooth networks, such as those built of ReLU ac-
tivation functions, a small gradient does not guarantee that the loss
remains small locally. That is, ReLU networks may increase rapidly
with a very small perturbation, even when local gradients are small.
This deficiency was identified in Papernot et al. (2016) and expanded
on by Athalye et al. (2018). In this scenario, PGD methods will fail
to locate these worst-case perturbations, and give a false impression
of robustness. Carlini and Wagner (2017b) avoid this scenario by
incorporating decision boundary information into the loss; others solve
(1) directly (Brendel et al., 2018; Chen & Jordan, 2019; Finlay et al.,
2019) using gradient-free methods or non-local attacks.

2.2. Derivation of theoretical lower bounds

This leads us to consider the following compromise between (1)
and (2). Consider the following modification of the Carlini and Wagner
(2017b) loss 𝓁(𝑥) = max𝑖≠𝑐 𝑓𝑖(𝑥) − 𝑓𝑐 (𝑥), where 𝑐 is the index of the
correct label, and 𝑓𝑖(𝑥) is the model output for the 𝑖th label. This
loss has the appealing property the sign of the loss determines if the
classification is correct. Adversarial attacks are found by minimizing

min
𝑣

‖𝑣‖ subject to 𝓁(𝑥 + 𝑣) ≥ 𝓁0 (3)

The constant 𝓁0 determines when classification is incorrect; for the
modified Carlini–Wagner loss, 𝓁0 = 0. Problem (3) is closer to the true
problem (1), and will always find an adversarial image. We use (3)
to derive theoretical lower bounds on the minimum size perturbation
necessary to misclassify an image. Suppose the loss is 𝐿-Lipschitz with
respect to model input. Then we have the estimate

𝓁(𝑥 + 𝑣) ≤ 𝓁(𝑥) + 𝐿‖𝑣‖ (4)

ow suppose 𝑣 is adversarial, with minimum adversarial loss 𝓁(𝑥 +
) = 𝓁0. Then rearranging (4), we obtain the lower bound ‖𝑣‖ ≥
1
𝐿

(

𝓁0 − 𝓁(𝑥)
)

.
Unfortunately, the Lipschitz constant is a global quantity, and ig-

nores local gradient information; see for example Huster et al. (2018).
Thus this bound can be quite poor, even when networks have small
Lipschitz constant. A tighter theoretical bound may instead be achieved
by using (i) the local gradient, and (ii) a bound on the error of a first
order approximation of the loss. At image 𝑥 and perturbations up to
size 𝜀, the error of a first order approximation of the loss is bounded
above by the modulus of continuity

𝜔(𝜀) = sup
𝑥, ‖𝑣‖≤𝜀

𝓁(𝑥 + 𝑣) −
[

𝓁(𝑥) + ⟨𝑣,∇𝓁(𝑥)⟩
]

(5)

ntuitively, this measures the maximum amount the gradient can change
ver perturbations of size 𝜀. Note that the quantity is defined for any
orm. Using this quantity, for perturbations of size 𝜀 we have the
stimate

(𝑥 + 𝑣) ≤ 𝓁(𝑥) + ⟨𝑣,∇𝓁(𝑥)⟩ + 𝜔(𝜀)

≤ 𝓁(𝑥) + ‖𝑣‖‖∇𝓁(𝑥)‖∗ + 𝜔(𝜀) (6)

s before, assume 𝑣 is adversarial, with minimum adversarial loss
(𝑥 + 𝑣) = 𝓁0. Rearranging (6), we obtain the lower bound ‖𝑣‖ ≥

1
‖∇𝓁(𝑥)‖∗

(

𝓁0 − 𝓁(𝑥) − 𝜔(𝜀)
)

.
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Remark 2.1. If the model and the loss are twice continuously differ-
entiable, the modulus of continuity can be derived from the maximum
curvature. However 𝜔(𝜀) is defined even when the model and the loss
are not twice differentiable.

We have proved the following.

Proposition 2.2. Suppose the loss 𝓁(𝑥) is Lipschitz continuous with respect
to model input 𝑥, with Lipschitz constant 𝐿. Let 𝓁0 be such that if 𝓁(𝑥) < 𝓁0,
the model is always correct. Then a lower bound on the minimum magnitude
of perturbation 𝑣 necessary to adversarially perturb an image 𝑥 is

‖𝑣‖ ≥
max{𝓁0 − 𝓁(𝑥), 0}

𝐿
(𝐿-bound)

Suppose in addition the modulus of continuity 𝜔(𝜀) is defined as in (5).
Then the minimum adversarial distance is bounded below by 𝜀 provided the
following inequality holds
𝓁0 − 𝓁(𝑥) − 𝜔(𝜀)

‖∇𝓁(𝑥)‖∗
≥ 𝜀 (𝜔-bound)

Proposition 2.2 motivates the need for input gradient regularization.
he Lipschitz constant 𝐿 is the maximum gradient norm of the loss over

all inputs. Therefore (𝐿-bound) says that a regularization term encour-
aging small gradients (and so reducing 𝐿) should increase the minimum
adversarial distance. This aligns with Hein and Andriushchenko (2017),
who proposed the cross-Lipschitz regularizer, penalizing networks with
large Jacobians in order to shrink the Lipschitz constant of the network.

However, this is not enough: the gap 𝓁0−𝓁(𝑥) must be large as well.
Together (𝐿-bound) explains one form of ‘gradient masking’ (Papernot
et al., 2017). Shrinking the magnitude of gradients while also closing
the gap 𝓁0−𝓁(𝑥) effectively does nothing to improve adversarial robust-
ness. For example, in one form of defence distillation, the magnitude
of the model Jacobian is reduced by increasing the temperature of the
final softmax layer of the network. However, this has the detrimental
side-effect of sending the model output to ( 1

𝑁 ,… , 1
𝑁 ), where 𝑁 is the

number of classes, which effectively shrinks the loss gap to zero. An
alternative form sends the temperature of the final softmax layer to
zero, which pushes the model output to a one-hot vector; however this
sends the Lipschitz constant to ∞. In either form, the lower bound
provided by Proposition 2.2 approaches zero.

Moreover, (𝜔-bound) states that even supposing the loss’ gradient
is small, and the gap 𝓁0 − 𝓁(𝑥) is large, there may still be adversarially
vulnerable images nearby due to errors in the first order approximation.
Taken together, Proposition 2.2 provides three sufficient conditions for
training robust networks: (i) the loss gap 𝓁0 − 𝓁(𝑥) should be large; (ii)
the gradients of the loss should be small; and (iii) the error of the first-
order approximation, measured by 𝜔(𝜀), should also be small. The first
point will be satisfied by default when the loss is minimized. The second
point will be satisfied by training with a loss regularized to penalize
large input gradients. In Section 4 we provide experimental evidence
that the third point is satisfied with input gradient regularization
implemented using finite differences.

These robustness bounds are most similar in spirit to Weng et al.
(2018), who derive bounds using an estimate of the local Lipschitz
constant of the model by sampling the model gradient norm locally.
Indeed, in practice, 𝐿 and 𝜔(𝜀) can only be estimated and are not
exactly computable on all but the simplest networks. We estimate 𝐿
and 𝜔(𝜀) using the Extreme Value Theory approach outlined by Weng
et al. (2018). To estimate 𝐿, we sample the maximum gradient norm
over batches from the data distribution, and estimate an upper bound
by fitting a generalized extreme value (GEV) distribution to these
samples through maximum likelihood estimation (MLE). Similarly, we
estimate 𝜔(𝜀) by sampling the maximum of (5) over batches of the
data distribution and ‖𝑣‖ ≤ 𝜀, and then fitting a GEV using MLE. The
values of 𝐿 and 𝜔(𝜀) used in our bounds are estimated from the fitted
GEV distribution with threshold 𝑝 = 0.001. Because these quantities

are estimates, in practice the theoretical bounds of Proposition 2.2

3

can only be implemented approximately, providing a heuristic measure
of adversarial robustness. Notably however, these bounds are valid in
any norm with corresponding dual. Furthermore, upon estimating 𝐿
and 𝜔(𝜀), we emphasize that these quantities only require one gradient
evaluation and one model evaluation to provide an estimate on the
robustness of an image.

To date, the theoretical bounds in the Euclidean norm that show the
greatest promise have arguably been those obtained through random-
ized smoothing (Cohen et al., 2019; Li et al., 2018; Salman et al., 2019).
In randomized smoothing, models are trained with inputs perturbed
through Gaussian noise; robust prediction is achieved by averaging
model predictions over inputs again perturbed with Gaussian noise,
which requires many tens of thousands of model evaluations. It is well
known that training with Gaussian noise is equivalent to squared 𝓁2
norm gradient regularization (Bishop, 1995). Therefore we expect that
models trained with squared norm gradient regularization, should have
similar adversarial robustness as those trained through randomized
smoothing.

3. Squared norm gradient regularization

Proposition 2.2 provides strong motivation for input gradient reg-
ularization as a method for promoting adversarial robustness. How-
ever, it does not tell us what form the gradient regularization term
should take. In this section, we show how norm squared gradient
regularization arises from a quadratic cost.

In adversarial training, solutions of (2) are used to generate images
on which the network is trained. In effect, adversarial training seeks a
solution of the minimax problem

min
𝑤

E
𝑥∼P

[

max
𝑣

𝓁(𝑥 + 𝑣;𝑤) − 𝑐(𝑣)
]

(7)

where P is the distribution of images. This is a robust optimization
roblem (Rousseeuw & Leroy, 1987; Wald, 1945). The cost function 𝑐(𝑣)

penalizes perturbed images from being too far from the original. When
the cost function is the hard constraint from (2), perturbations must be
inside a norm ball of radius 𝛿. This leads to adversarial training with
PGD (Kurakin et al., 2016; Madry et al., 2017). However this forces
a particular scale: it is possible that no images are adversarial within
radius 𝛿, but that there are adversarial images with only a slightly
larger distance. Instead of using a hard constraint, we can relax the
cost function to be the quadratic cost 𝑐(𝑣) = 1

2𝛿 ‖𝑣‖
2. The quadratic cost

allows attacks to be of any size, but penalizes larger attacks more than
smaller attacks. With a quadratic cost, there is less of a danger that a
local attack will be overlooked.

Solving (7) directly is expensive: on ImageNet-1k, both Kannan et al.
(2018) and Xie et al. (2018) required large-scale distributed training
with many dozens or hundreds of GPUs, and over a week of training
time. Recent research suggests this hurdle may be surmounted (Shafahi
et al., 2019; Zhang et al., 2019). However we take the view that (7) may
be bounded above, and solved approximately. When the loss is smooth,
the modulus of continuity is 𝜔(𝜀) = 𝜀2𝐶, where 𝐶 is the maximum
positive Hessian norm over all inputs. By using the bound (6) with
the quadratic loss 𝑐(𝑣) = 1

2𝛿 ‖𝑣‖
2, the optimal value of max𝑣 𝓁(𝑥 + 𝑣) −

(𝑣) is 𝛿
2(1−𝛿𝐶)‖∇𝑥 𝓁(𝑥)‖2∗, provided 𝛿 < 1

𝐶 . This gives the following
proposition.

Proposition 3.1. Suppose both the model and the loss are twice con-
tinuously differentiable. Suppose attacks are measured with quadratic cost
1
2𝛿 ‖𝑣‖

2. Then the optimal value of (7) is bounded above by

min
𝑤

E
𝑥∼P

[

𝓁(𝑥;𝑤) + 𝜆
2
‖∇𝑥 𝓁(𝑥)‖2∗

]

(8)

where 𝜆 = 𝛿 .
1−𝛿𝐶
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That is, we may bound the solution of the adversarial training
problem (7) by solving the gradient regularization problem (8), when
the cost function is quadratic. It is not necessary to know 𝛿 or compute
𝐶; they are absorbed into 𝜆.

Input gradient regularization using the squared 𝓁2 norm was pro-
posed for adversarial robustness in Ross and Doshi-Velez (2018). It was
expanded by Roth et al. (2018) to use a Mahalanobis norm with the
correlation matrix of adversarial attacks.

When 𝑐(𝑣) is the hard constraint forcing attacks inside the 𝛿 norm
ball and 𝐶 is small, supposing the curvature term is negligible, we
can estimate the maximum in (7) by 𝓁(𝑥) + 1

𝛿 ‖∇𝑥 𝓁(𝑥)‖∗, using the
dual norm for the gradient. This is norm gradient regularization (not
squared), and has been used for adversarial robustness on both CIFAR-
10 (Simon-Gabriel et al., 2018), and MNIST (Seck et al., 2019).

3.1. Finite difference implementation

Norm squared input gradient regularization has long been used as a
regularizer in neural networks: Drucker and LeCun (1991) first showed
its effectiveness for generalization. Drucker and LeCun implemented
gradient regularization with ‘double backpropagation’ to compute the
derivatives of the penalty term with respect to the model parameters
𝑤, which is needed to update the parameters during training. Double
backpropagation involves two passes of automatic differentiation: one
pass to compute the gradient of the loss with respect to the inputs 𝑥, and
nother pass on the output of the first to compute the gradient of the
enalty term with respect to model parameters 𝑤. In neural networks,
ouble backpropagation is the standard technique for computing the
arameter gradient of a regularized loss. However, it is not currently
caleable to large neural networks. Instead we approximate the gradient
egularization term with finite differences.

roposition 3.2 (Finite Difference Approximation of Squared 𝓁2 Gra-
dient Norm). Let 𝑑 be the normalized input gradient direction: 𝑑 =
∇𝑥 𝓁(𝑥)∕‖∇𝑥 𝓁(𝑥)‖2 when the gradient is nonzero, and set 𝑑 = 0 otherwise.
Let ℎ be the finite difference step size. Then, the squared 𝓁2 gradient norm
is approximated by

‖∇𝑥 𝓁(𝑥)‖22 ≈
(

𝓁(𝑥 + ℎ𝑑) − 𝓁(𝑥)
ℎ

)2
(9)

The vector 𝑑 is normalized to ensure the accuracy of the finite
difference approximation: as can be seen by (6), the error of the finite
difference is bounded by 𝜔(ℎ)∕ℎ. Without normalizing the gradient,
this term can be large, which is undesirable in general. However, the
finite difference error term does play a role in promoting adversarial
robustness. Proposition 2.2 shows it is necessary for 𝜔(𝜀) to be small.
By using finite differences, minimizing (8) also implicitly minimizes
𝜔(ℎ), due to the error terms. This is because the error of the finite
difference approximation is bounded above by the 𝜔(ℎ). Thus the finite
difference approximation provide an indirect means for controlling the
modulus of continuity 𝜔(𝜀) necessary for adversarial robustness. This
would otherwise be unavailable with an exact method for computing
the gradient norm.

The finite differences approximation (9) allows the computation of
the gradient of the regularizer (with respect to model parameters 𝑤)
to be done with only two regular passes of backpropagation, rather
than with double backpropagation. On the first, the input gradient
direction 𝑑 is calculated. The second computes the gradient with re-
spect to model parameters by performing backpropagation on the
right-hand-side of (9). Double backpropagation is avoided by detaching
𝑑 from the computational graph after the first pass. In practice, for
large networks, we have found that the finite difference approximation
of the regularization term is considerably more efficient than using
double backpropagation. On networks sized for MNIST, we have ob-
served roughly a 10% speed improvement by using finite differences;
on CIFAR-10 networks finite differences are roughly 50% faster than

double backpropagation.

4

Our proposed training algorithm, with squared Euclidean input
gradient regularization, is presented in Algorithm 1 of Appendix A.
Other gradient penalty terms can be approximated as well. For exam-
ple, when defending against attacks measured in the 𝓁∞ norm, the
squared 𝓁1 norm penalty can approximated by setting instead 𝑑 =
sign(∇𝑥 𝓁(𝑥))∕

√

𝑁 when the gradient is nonzero.

4. Experimental results

In this section we provide empirical evidence that input gradient
regularization is an effective tool for promoting adversarial robustness.
We attack networks with gradient-free attacks, and demonstrate gradi-
ent regularization does not lead to gradient obfuscation. Moreover our
results show that gradient regularization is comparable to adversarial
training, both experimentally and through rigorous certification.

We train networks on the CIFAR-10 dataset (Krizhevsky & Hinton,
2009), and ImageNet-1k (Deng et al., 2009). On the CIFAR dataset
we use the ResNeXt-34 (2x32) architecture; on ImageNet-1k we use a
ResNet-50 (He et al., 2016). The CIFAR networks were trained with
standard data augmentation and learning rate schedules on a single
GeForce GTI 1080 Ti. On ImageNet-1k, we modified the training code
of Shaw et al.’s (0000) submission to the DAWNBench competition
(Coleman et al., 2018) and train with four GPUs. Training code and
trained model weights will be made available.

We train an undefended network as a baseline to compare vari-
ous types of regularization. On CIFAR-10, networks are trained with
squared 𝓁2 and squared 𝓁1 gradient norm regularization. The former is
appropriate for defending against attacks measured in 𝓁2; the latter for
attacks measured in 𝓁∞. We set the regularization strength to be either
𝜆 = 0.1 or 1; and set finite difference discretization ℎ = 0.01 unless
otherwise specified. (For a study of the effect of finite difference size ℎ,
refer to Table B.4.) We compare each network with the most common
form of adversarial training, where models are trained using the hy-
perparameters in Madry et al. (2017) (7-steps of FGSM, projected onto
an 𝓁∞ ball of either radius 8

255 or 2
255 ). On CIFAR-10 we also compare

against the ‘For Free’ implementation of Shafahi et al. (2019), using
the same hyperparameters. On ImageNet-1k we only train adversarially
robust models with squared 𝓁2 regularization.

On each dataset, we attack 1000 randomly selected images. We
perturb each image with attacks in both the Euclidean and 𝓁∞ norms,
with a suite of current state-of-the-art attacks: the Carlini–Wagner
attack (Carlini & Wagner, 2017b); the Boundary attack (Brendel et al.,
2018) (a gradient-free attack); the LogBarrier attack (Finlay et al.,
2019) (a non-local attack); and PGD (Madry et al., 2017) (in both the
𝓁∞ norm or the 𝓁2 norm). The former three attacks have all been shown
effective at evading gradient masking and gradient obfuscation. PGD
excels at finding images close to the original when gradients are not
close to zero. We report our results using the best adversarial distance
on a per image basis, in each norm. On the majority of test images, PGD
finds the closest adversarial image. However on a significant portion of
inputs, the closest adversarial image is found by one of the three other
attacks.

Adversarial robustness results for networks attacked in the 𝓁∞
orm are presented in Table 1. These results are for networks built
f standard ReLUs. Table 1 and Fig. 1 demonstrate a clear trade-off
etween test accuracy and adversarial robustness, as the strength of
he regularization is increased. On CIFAR-10, the undefended network
chieves test error of 4.36%, but is not robust to attacks even at 𝓁∞
istance 2

255 . However with a strong regularization parameter (𝜆 = 1),
est error increases to 9.02% on clean images. At both adversarial
istance 𝜀 = 2

255 and 8
255 adversarial training achieves slightly better

robustness (by about 5% percent) than our best models, yet comes at
over double the training time.

In Table 1 we also report heuristic measures of robustness using
(𝜔-bound). We skip reporting bounds using (𝐿-bound), for this bound
returned vacuous results (an upper bound of 100% test error at all
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Fig. 1. Adversarial attacks on the CIFAR-10 dataset, on networks built with standard ReLUs. Regularized networks attacked in 𝓁2 are trained with squared 𝓁2 norm gradient
egularization; networks attacked in 𝓁∞ are trained with squared 𝓁1 norm regularization.
Table 1
Adversarial robustness statistics, measured in the 𝓁∞ norm. Top1 error is reported on CIFAR-10; Top5 error on ImageNet-1k. On CIFAR-10
gradient regularization is reported using either double backpropagation (DBP) or finite differences (FD).

% clean error 𝜔-bound % error at Empirical % error at Training time
(hours)𝜀 = 2

255
𝜀 = 8

255
𝜀 = 2

255
𝜀 = 8

255

CIFAR-10

Undefended 4.36 100 100 70.82 98.94 2.06
𝓁∞ 7-step AT, 𝜀 = 2∕255 6.17 16.02 100 16.80 53.90 10.82
𝓁∞ 7-step AT, 𝜀 = 8∕255 16.33 26.59 58.32 22.86 46.02 12.10
𝓁∞ ‘For Free’ AT, 𝑚 = 2 6.82 20.08 100 22.61 63.95 1.91
𝓁∞ ‘For Free’ AT, 𝑚 = 8 19.94 38.52 100 34.09 61.48 2.04
Squared 𝓁1 norm (DBP), 𝜆 = 0.1 6.50 25.69 100 41.63 97.31 9.85
Squared 𝓁1 norm (DBP), 𝜆 = 1 12.62 33.05 99.43 33.95 80.37 9.89
Squared 𝓁1 norm (FD), 𝜆 = 0.1 6.45 19.40 100 24.92 70.41 5.22
Squared 𝓁1 norm (FD), 𝜆 = 1, ℎ = 0.1 9.02 20.66 55.30 18.47 58.69 5.15

ImageNet-1k

Undefended 6.94 100 100 90.21 98.94 20.30
Squared 𝓁2 norm, 𝜆 = 0.1 7.66 74.7 100 70.56 97.53 32.60
Squared 𝓁2 norm, 𝜆 = 1 10.26 63.7 100 52.79 95.93 33.87
distances). On some test images the heuristic bound fails; this is due
to the inherent difficulty of estimating 𝜔(𝜀) accurately.

In Table 2 we report results on models trained for attacks in the
𝓁2 norm. On CIFAR-10, the most robust model is trained with reg-
ularization strength 𝜆 = 1, and outperforms even the adversarially
trained model. On ImageNet-1k, we see the same pattern: the model
trained with 𝜆 = 1 offers the best protection against adversarial attacks.
Due to the long training time, we were not able to train ImageNet-1k
with standard multi-step adversarial training. In Table 2 we also report
our heuristic measure of bounds on the minimum distance required to
adversarially perturb, using the Carlini–Wagner loss.1 Further 𝜔-bound
results on CIFAR-10 are presented in Table B.6 Both (𝐿-bound) and
(𝜔-bound) provide reasonable estimates of the minimum adversarial
distance, though (𝜔-bound) is closer to empirical results. These heuris-
tic measures of robustness are further corroborated by Table B.3 of
Appendix B, which shows that both adversarial training and gradient
regularization significantly decrease model gradients and the modulus
of continuity 𝜔(𝜀). We also use randomized smoothing, a tight and exact
bound on robustness, to verify our heuristic measures, see Table B.5.

5. Conclusion

We have provided motivation for training adversarially robust net-
works through input gradient regularization, by bounding the mini-
mum adversarial distance with gradient statistics of the loss. We have
shown that gradient regularization is scaleable to ImageNet-1k, and
provides adversarial robustness competitive with adversarial training,

1 This loss can be modified for Top-5 mis-classification as well.
5

both theoretically and empirically. Moreover we have demonstrated
that gradient regularization does not lead to gradient obfuscation.
Networks may be trained using gradient regularization in fractions of
the training time of standard adversarial training.

We gave theoretical per-image bounds on the minimum adversarial
distance, for non-smooth models, using the Lipschitz constant of the
loss, and its modulus of continuity, which measures the error of a
first order approximation of the loss. These bounds were empirically
compared against state-of-the-art attacks and other theoretical bounds.
Although in practice these bounds give heuristic measures of robust-
ness, they are valid in any norm, and provide per-image robustness
measures at the cost of only one model evaluation and one gradient
evaluation.
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Table 2
Adversarial robustness statistics, measured in 𝓁2. Top1 error is reported on CIFAR-10; Top5 error on ImageNet-1k. On CIFAR-10 gradient
regularization is reported using either both double backpropagation (DBP) or finite differences (FD).

% clean error Mean adversarial distance Training time
(hours)𝐿-bound 𝜔-bound Empirical

CIFAR-10

Undefended 4.36 0.006 0 0.12 2.06
𝓁∞ 7-step AT, 𝜀 = 2∕255 6.17 0.05 0.36 0.66 10.82
𝓁∞ 7-step AT, 𝜀 = 8∕255 16.33 0.18 0.55 0.74 12.10
𝓁∞ ‘For Free’ AT, 𝑚 = 2, 𝜆 = 0.1 6.82 0.06 0.35 0.53 1.91
𝓁∞ ‘For Free’ AT, 𝑚 = 8, 𝜆 = 1 19.94 0.03 0.29 0.49 2.04
Squared 𝓁2 norm (DBP), 𝜆 = 0.1 5.91 0.006 0 0.13 9.60
Squared 𝓁2 norm (DBP), 𝜆 = 1 4.35 0.01 0 0.15 9.74
Squared 𝓁2 norm (FD), 𝜆 = 0.1 8.03 0.14 0.34 0.63 5.18
Squared 𝓁2 norm (FD), 𝜆 = 1 20.31 0.30 0.50 0.81 5.08

ImageNet-1k

Undefended 6.94 3.63e−2 0.5 0.55 20.30
Squared 𝓁2 norm, 𝜆 = 0.1 7.66 0.13 0.96 1.14 32.60
Squared 𝓁2 norm, 𝜆 = 1 10.26 0.26 1.23 1.75 33.87
Fig. B.2. Adversarial attacks on ImageNet-1k with the ResNet-50 architecture. Top5 error reported.
Table B.3
Regularity statistics on selected models, measured in the 𝓁2 norm. Statistics computed
sing modified loss max𝑖 ≠ 𝑐 𝑓𝑖(𝑥) − 𝑓𝑐 (𝑥).

‖∇𝓁(𝑥)‖
𝜔(0.5) 𝜔(1.0)

mean max

CIFAR-10

Undefended 3.05 122.34 1.80 3.13
𝓁∞ 7-step AT, 𝜀 = 2∕255 0.63 11.96 0.08 0.32
𝓁∞ 7-step AT, 𝜀 = 8∕255 0.40 2.52 0.02 0.06
𝓁∞ ‘For Free’, 𝑚 = 2 0.75 10.82 0.13 0.35
𝓁∞ ‘For Free’, 𝑚 = 8 0.93 16.08 0.11 0.31
Squared 𝓁2 norm (DBP), 𝜆 = 0.1 3.38 107.13 1.60 1.40
Squared 𝓁2 norm (DBP), 𝜆 = 1 2.75 56.09 1.31 2.30
Squared 𝓁2 norm (FD), 𝜆 = 0.1 0.58 4.43 0.08 0.50
Squared 𝓁2 norm (FD), 𝜆 = 1 0.35 1.33 0.02 0.05

ImageNet-1k

Undefended 1.12 17.51 1.7e−2 6.7e−2
Squared 𝓁2 norm, 𝜆 = 0.1 0.46 4.85 5.5e−3 2.2e−2
Squared 𝓁2 norm, 𝜆 = 1 0.27 2.12 3.4e−3 2.1e−2
6

Table B.5
Certified test error (%) at various 𝓁2 radii on CIFAR-10, using the randomized
smoothing certification technique of Cohen et al. (2019).

0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0

Undefended 90 92 96 99 100 100 100 100
Squared 𝓁2 norm, 𝜆 = 1 47 63 80 90 90 90 90 90

Cohen et al. (2019) 40 57 68 77 83 86 88 90
Salman et al. (2019) 26 43 52 62 67 71 75 81

Table B.6
Certified test error (%) at various 𝓁2 radii on CIFAR-10, using (𝜔-bound).

0.25 0.5 0.75 1.0 1.25 1.5

Undefended 100 100 100 100 100 100
𝓁∞ 7-step AT, 𝜀 = 2∕255 19 91 100 100 100 100
𝓁∞ 7-step AT, 𝜀 = 8∕255 31 47 61 77 100 100
Squared 𝓁2 norm (FD), 𝜆 = 0.1 22 99 100 100 100 100
Squared 𝓁2 norm (FD), 𝜆 = 1 33 50 65 80 98 100
Table B.4
Study of empirical robustness in the 𝓁∞ norm as a function of finite difference size ℎ. All models here
trained with squared 𝓁1 norm gradient penalty, with regularizer strength 𝜆 = 1.

% clean error Empirical % error at

𝜀 = 2
255

𝜀 = 8
255

Undefended 4.36 70.82 98.94
Double backpropagation 12.62 33.95 80.37
ℎ = 1e−4 39.68 50.95 84.20
ℎ = 1e−3 25.84 38.81 78.65
ℎ = 1e−2 14.47 26.54 69.91
ℎ = 0.1 9.02 18.47 58.69
ℎ = 1 5.51 45.93 83.86
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Appendix A. Training algorithm

Algorithm 1 Training with squared 𝓁2-norm input gradient regulariza-
ion, using finite differences
1: Input: Initial model parameters 𝑤0
Hyperparameters: Regularization strength 𝜆; batch size 𝑚; finite
difference discretization ℎ

2: while 𝑤𝑡 not converged do
3: sample minibatch of data

{

(𝑥(𝑖), 𝑦(𝑖))
}

𝑖=1,…,𝑚 from empirical
distribution P̂

4: for 𝑖 = 0 to 𝑚 do
5: 𝑔(𝑖) = ∇𝑥𝓁(𝑥(𝑖), 𝑦(𝑖);𝑤𝑡)

6: 𝑑(𝑖) =

⎧

⎪

⎨

⎪

⎩

𝑔(𝑖)

‖𝑔(𝑖)‖2
if 𝑔(𝑖) ≠ 0

0 otherwise
⊳

for 𝓁1-norm use normalized signed gradient
7: detach 𝑑(𝑖) from computational graph
8: 𝑧(𝑖) = 𝑥(𝑖) + ℎ𝑑(𝑖)

9: end for
0: (𝑤) = 1

𝑚
∑𝑚

𝑖=1 𝓁(𝑥
(𝑖), 𝑦(𝑖);𝑤)

1: (𝑤) = 1
𝑚
∑𝑚

𝑖=1
1
ℎ2

(

𝓁(𝑧(𝑖), 𝑦(𝑖);𝑤) − 𝓁(𝑥(𝑖), 𝑦(𝑖);𝑤)
)2

12: 𝑤𝑡+1 ← 𝑤𝑡 − 𝜏𝑡 ∇𝑤
(

(𝑤𝑡) + 𝜆(𝑤𝑡)
)

13: end while

Appendix B. Additional empirical results

See Fig. B.2 and Tables B.3–B.6.
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