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ABSTRACT

This dissertation studies several applied mathematical problems which broadly fall under
the modelling framework of nonlinear elliptic partial differential equations (PDEs). Solu-
tions to these problems are placed in the analytic setting of the theory of viscosity solutions;
convergence of corresponding numerical solutions rely on the monotone schemes using
the proof technique of Barles and Sougandidis.

The first two chapters study the problem of homogenization of nonlinear elliptic PDEs:
find a macroscopic operator and corresponding solution that captures the behaviour of
a rapidly varying microscopic operator, on broad scales. This is done through duality
theory; we approximately solve an equivalent dual problem, which provides bound(s)
on the true homogenized operator. Numerical experiments show that these approximate
homogenized operators are quite accurate; in some cases error bounds are available using
semi-concavity estimates.

The third chapter develops monotone finite difference schemes for nonlinear elliptic
PDEs on point clouds. To date, most numerical methods for these equations have been
on regular grids; motivated by the work of Froese this chapter extends monotone finite
difference schemes to point clouds. The schemes rely on linear interpolation of neighbour-
ing points in barycentric coordinates. Our schemes are of higher accuracy than previously
available on both regular grids and point clouds. We prove consistency and stability of the
schemes and provide several numerical examples in 2D.

The final chapter explores the problem of adversarial examples in image classification.
These are small perturbations of an input image which cause a classifier to fail where a
human would easily succeed. We address this problem using gradient regularization,
which is inextricably linked to Tikhonov regularization in inverse problems and the p-
Laplacian. We provide bounds on the minimum distance necessary to perturb an image
adversarially, and show that gradient regularization improves these bounds. Moreover
we implement gradient regularization in a scaleable fashion, using finite differences. This
allows for quick training of adversarially robust models on very large datasets, which was
previously intractable using prior methods.
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ABRÉGÉ

Cette thèse porte sur l’étude de plusieurs problèmes de mathématiques appliquées, dont le
cadre général est celui des équations aux dérivées partielles (EDP) elliptiques non-linéaires.
La résolution de ces problèmes est obtenue dans le contexte de la théorie des solutions
visqueuses; la convergence des solutions numériques correspondantes repose sur des
schémas monotones, et utilise des techniques de preuves à la Barles et Sougandidis.

Les deux premiers chapitres s’intéressent à l’étude de l’homogénéisation d’EDP ellip-
tiques non-linéaires: Trouver un opérateur macroscopique, et la solution correspondante
qui capture à grande échelle le comportement de variations rapides d’un opérateur mi-
croscopique. Ceci est fait au travers du principe de dualité; la solution du problème
dual équivalent est approximée, permettant de fournir une (des) borne(s) sur l’opérateur
homogénéisé exacte. Les tests numériques montrent que l’approximation des opérateurs
homogénéisés est précise; dans certains cas des bornes d’erreurs sont accessibles en util-
isant des estimés semi-concaves.

Le troisième chapitre développe des schémas de différences finies monotones sur des
nuages de points pour des EDP elliptiques non-linéaires. À ce jour, la plupart des méthodes
numériques pour ce type d’équations sont définies sur des grilles régulières; motivé par
les travaux de Froese, ce chapitre étend ces schémas de différences finies à des nuages
de points. Ces schémas reposent sur une interpolation linéaire d’un voisinage de points
dans un système de coordonnées barycentriques. Nos schémas ont un degré de précision
plus élevé que ceux précédemment disponibles, tant sur des grilles régulières que sur
des nuages de points. Des preuves de la consistences et de la stabilité des schémas sont
données et plusieurs exemples en 2D sont présentés.

Le dernier chapitre explore le problème d’exemples antagonistes dans la classification
d’images. Il s’agit de petites perturbations sur l’image d’entrée qui conduit à un échec
du classifieur là où un humain réussit sans difficulté. Ce problème est traité au moyen de
régularisation du gradient, et est intrinsèquement lié à la méthode de régularisation de
Tikhonov des problèmes inverses et du p-Laplacien. Des bornes sur la distance minimale
nécessaire pour perturber des images de manière adverse sont données et montrent que la
régularisation du gradient permet de les améliorer. De plus, la méthode de régularisation
du gradient est implémentée de manière adaptable à l’aide de différences finies. Ceci
permet des entrainements rapides de modèles robustes à l’adversité sur un large ensemble
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de données, ce qui était auparavant intractable au moyen de méthodes précédemment
disponibles.
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CHAPTER 1

INTRODUCTION

This thesis is comprised of four parts, each of which is a self-contained manuscript and may
be read indepently of the others. All chapters contain background material, a literature
review, and concluding remarks; each stands on its own. Nevertheless, in this concise
introduction we provide a high level overview of the material in this thesis, including
general background material and key references, and thematically knit the contents into a
cohesive whole.

BACKGROUND

This thesis is concerned with several applied problems which are placed within the
context of elliptic partial differential equations (PDEs). Elliptic PDEs are operators for
which a weak comparison principle holds: roughly, an operator F is said to be elliptic if
F [u] ≤ F [v] =⇒ u ≥ v. The comparison principle is the main tool for proving uniqueness
of solutions, by inducing an ordering on sub- and super-solutions (respectively those
satisfying F [u] ≤ 0 and F [v] ≥ 0). In a heuristic way, elliptic PDEs behave analagously to
Laplace’s equation, a basic example of an elliptic operator.

The correct framework for studying solutions of elliptic PDEs is that of viscoscity
solutions, introduced by Crandall, Lions and Evans in a series of papers [Eva80, CL83,
CEL84]. For a definitive overview, see [CIL92]. Because they are typically not differentiable
everywhere, viscosity solutions do not satisfy elliptic PDEs in a classical sense. However,
viscosity solutions are a type of weak solution, in that the requirement of differentiability
is passed to C2 test functions as follows. Roughly, an upper semi-continuous function u
is said to be a viscosity sub-solution at a point x if for every C2 test function φ such that
u− φ attains a maximum at x, with u(x) = φ(x), the inequality F [φ] ≤ 0 holds. Pictorially,
φ grazes u from above at x. Similarly, super-solutions may be defined. A viscosity solution
is then both a sub- and super-solution.

The great power of the viscosity solution framework is that it allows for solutions of a
truly vast number of nonlinear elliptic PDEs arising in physics, engineering and elsewhere
for which classical solutions are not available. For example, the Monge-Ampère equation
(arising in optimal transport [Vil08]); the p-Laplacian (semi-supervised learning [Cal17],
image denoising [RO94]); Hamilton-Jacobi-Bellman equations (stochastic optimal control
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[FS06]); Isaacs equations (stochastic differentiable games [BEJ84]); and affine curvature
(edge detection, image analysis [Sap06]) are all described by nonlinear elliptic PDEs for
which the theory of viscosity solutions applies.

APPROXIMATE HOMOGENIZATION OF NONLINEAR ELLIPTIC PDES

Chapters 2 and 3 are concerned with the approximate homogenization of non-linear elliptic
PDEs. Homogenization is the problem of replacing an operator F ε[u] that depends on
a microscopic scale ε, with another macroscopic operator F [u]. The operator F [u] does
not depend on the microscopic scale ε. It is hoped that solutions of F [u] = 0 agree with
solutions F ε[uε] = 0 closely, with error on the order of ε. In other words, homogenization
seeks to find a limiting PDE as ε→ 0, with solutions uε converging uniformly to u.

In [Eva89], Evans showed that for nonlinear elliptic PDEs, the viscosity solution frame-
work gives a means for tackling this problem, by passing the limit problem onto smooth
perturbed test functions. At the end of the day, this amounts to solving the cell problem. For
a second-order operator, for a symmetric Q ∈ Sd, the cell problem is to find a unique value
F̄ and a periodic viscosity solution uε which satisfy

F ε(Q+D2uε(y)) = F̄ (1.1)

The value F̄ implicitly depends on Q, in fact this is the homogenized operator.

There is a large array of theoretical homogenization literature, including homogeniza-
tion in stochastic environments, and rates of convergence (see for example [AKM19] for
recent work on divergence-form operators). For a general review, see [ES08]. However,
there are few works on analytic representations of homogenized operators. Chapters 2
and 3 aim to address this gap, for some families of periodic operators.

In Chapter 2 we obtain analytic representations of the homogenization of fully non-
linear, convex uniformly elliptic PDEs. Rather than solving the cell problem directly,
convexity of the operator allows for a solution of the cell problem to be found using
duality arguments. In particular, the cell problem has an associated dual problem, with
an associated solution, called the optimal invariant measure. It is often easier to solve the
dual problem than the cell problem. Notably, non-optimal solutions to the dual problem
provide a lower bound on the true solution of the cell problem. This is the approach
taken in Chapter 2: we approximately solve the dual problem to obtain (approximate)
analytic representations of the homogenized operator, for several concrete examples. We
show numerically (through monotone finite difference numerical schemes, see below) that
these approximate homogenizations are ‘good enough’ in many regimes. In fact the error
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of these approximate homogenizations is only large near areas of high curvature in the
operator.

In Chapter 3 we tackle approximate homogenization of Pucci-type operators. These
are operators that are sums of the minimal and maximal eigenvalues of the Hessian,
and are non-convex in general. Pucci-type operators are important objects of study in
their own right, for they provide bounds on viscosity solutions of uniformly elliptic
equations in non-divergence form [CC95]. Our approximate homogenization is obtained
by first linearizing the operator, which leads to a non-divergence form homogenization
problem which approximately solves the original. We homogenize this linearized operator
as in Chapter 2, using the optimal invariant measure. We obtain error bounds of the
approximate homogenization using semi-concavity estimates on the original operator.
Numerical results show that the approximate homogenization is remarkably accurate
away from areas where the original operator is non-differentiable.

MONOTONE FINITE DIFFERENCE SCHEMES ON POINT CLOUDS

In practice, elliptic PDEs must be solved with numerical methods. This is the focus of
Chapter 4. Provably convergent numerical schemes are available via the seminal work
of Barles and Sougandidis [BS91]. Briefly, schemes converge to the unique viscosity
solution of the underlying elliptic PDE if they (i) respect the ordering induced by the
comparison principle of the underlying operator (said to be monotone), (ii) are stable,
and (iii) are consistent. However, given an elliptic PDE, the construction of a monotone,
stable and convergent scheme is not at all obvious a priori. In [Obe06], a framework for
the construction of these schemes was developed using so-called elliptic schemes, and are
the natural framework for construction of monotone finite difference schemes. This led to
the development of wide-stencil schemes on regular grids, which are needed for elliptic
schemes of second-order elliptic PDEs, as in the Monge-Ampère equation (arising from
Optimal Transport) or Pucci-type operators [Obe08b].

Although wide-stencil elliptic schemes are provably convergent, they often suffer from
low accuracy, because they depend both on the spatial resolution of the discretization,
and the width of the stencil. In [FO13] this issue was addressed using filtered schemes,
which combine elliptic schemes with more accurate (but are potentially unstable) methods,
while still being provably convergent. However because filtered schemes are built on
elliptic schemes, it is still desirable to search for more accurate elliptic schemes. This is the
purpose of Chapter 4, where we develop more accurate wide-stencil elliptic schemes than
previously available.
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Moreover, there has been much recent interest in extending elliptic schemes to mesh-
free point clouds, for example in freeform optic design for laser beam [FFL+17]. In [Fro18],
Froese proposed a mesh-free elliptic scheme for point clouds in two dimensions. Motivated
by this work, in Chapter 4 we extend the method presented therein to point clouds in
n-dimensons. The method is compared to that of [Fro18], and is shown to have higher
asymptotic accuracy.

GRADIENT REGULARIZATION FOR ADVERSARIAL ROBUSTNESS

Although not obvious at first, there is a deep connection between elliptic PDEs and Chapter
5, which is concerned with the construction of adversarially robust models in machine
learning regression and classification problems. In both regression and classification
problems, the modeling task is to learn a map u : X → Y that closely matches a label
function f , provided some distribution ρ on X . Typically X is a closed and bounded subset
of Rd. The learned function u is restricted to some smaller function class F : for example, a
simple choice is the space of affine functions; whereas kernel based methods represent u
approximately as a finite sum of basis elements (feature maps in ML parlance) of a Hilbert
space (see for example [MRT18, Ch. 6]). Also in vogue, F may be represented via a neural
network architecture.

Irrespective of the function class, u is found by minimizing a functional. In regression,
the squared error is error used: u solves

min
u∈F

∫
X

(u− f)2 dρ (1.2)

In classification, the Kullback-Leibler (KL) divergence is minimized instead. Of course,
in real-world applications f is not known everywhere (for otherwise we would simply
forgo this entire process and use f instead), but merely on a subset of m samples {(xi, fi)},
i = 1, . . . ,m, where the xi’s are drawn randomly according to the distribution ρ. To find u,
the empirical risk is minimized

min
u∈F

1
m

m∑
i=1

(u(xi)− fi)2 (1.3)

Unfortunately, when F is broad enough, naively minimizing the empirical risk leads
to a host of problems. Foremost among these is a failure to generalize, also known as
over-fitting. Given a broad enough function class, the learned function may perfectly
minimize the empirical risk perfectly, yet have large error over the entire distribution ρ.

Equally troubling is the occurrence of adversarial examples, first observed in neural
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networks by [BCM+13] and [SZS+13] in the context of computer vision classification. Even
supposing a learned function u generalizes well, it is still possible to imperceptibly perturb
real-world images (to the human eye) so that predictions made by u are wildly incorrect,
when a human would have no trouble at all labeling the image correctly. Hence without
further action, neural networks are not adversarially robust.

Many solutions aimed at addressing this problem have been proposed, yet prior to our
work none to-date have scaled well to very large datasets. In Chapter 5, we propose a
fast and scaleable implementation of gradient regularization for adversarial robustness in
neural networks. Ideally we would regularize (1.2) with a gradient penalty term, similar to

min
u∈F

∫
X

(u− f)2 + |∇u|2 dρ, (1.4)

which would penalize solutions for being susceptible to adversarial perturbations. In
many fields this is known as a form of Tikhonov regularization [TA77] and has a long
history of study, especially in inverse problems.

However Chapter 5 is concerned primarily with classification, where the function u

returns a classification probability, and so it is more convenient to consider a slightly
modified version of (1.4). For the quadratic loss, we suggest penalizing large gradients of
the loss via

min
u∈F

∫
X

(u− f)2 + λ|∇u−∇f |2 dρ (1.5)

where λ can be thought of as a Lagrange multiplier controlling the regularization strength.
Chapter 5 discusses a similar penalty, for large gradients of the KL loss.

The variational problem (1.4) is intimately tied to an elliptic partial differential equation.
The Euler-Lagrange equation associated with (1.4) is

u− 1
ρ

div(ρ∇u) = f (1.6)

which is slightly modified when considering (1.5). A similar elliptic PDE arises in semi-
supervised learning, in which labels fi are only present on a subset of the sampled data. In
this scenario, the variational problem is to minimize

min
u∈F

∫
X
|∇u|p dρ subject to u ≡ f on available data. (1.7)

Minimizers of (1.7) satisfy the p-Laplacian, − div(ρ|∇u|p−2∇u) = 0. For a discussion of the
connections between semi-supervised learning and the p-Laplacian, see [Cal17, Cal19],
where it was shown that in the limit of infinite unlabeled data but finite labeled data (1.7)
is well posed only when p > d. In a certain sense, the adversarial robustness problem
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(1.4) can be viewed as a soft relaxation of (1.7), in which the hard constraint has been
incorporated as a penalty term via the squared error (u− f)2.

In low dimension, the p-Laplacian and (1.6) may be solved numerically with wide-
stencil elliptic finite difference schemes, discussed in Chapter 4. For example, in Chapter
4 we solve the∞-Laplacian using the higher accuracy wide-stencil method developed
therein, with the p-Laplacian finite difference schemes proposed in [Obe05, Obe13].

Though in practice PDE based methods are intractable in the high dimensional setting of
machine learning, we nevertheless draw inspiration from the numerical analysis literature,
and use finite differences to approximate the gradient regularization term in (1.4), opting to
solve (1.4) directly. This allows us to avoid ‘double backpropagation’ (applying automatic
differentiation twice), and is to our knowledge the first method for adversarial robustness
which scales efficiently to very large datasets like ImageNet-1k [DDS+09]. We also provide
theoretical lower bounds on the minimum distance necessary to adversarially perturb an
image, and empirically show that gradient regularization improves these bounds.



CHAPTER 2

APPROXIMATE HOMOGENIZATION OF CONVEX NONLINEAR

ELLIPTIC PDES

Abstract

We approximate the homogenization of fully nonlinear, convex, uniformly elliptic

Partial Differential Equations in the periodic setting, using a variational formula for the

optimal invariant measure, which may be derived via Legendre-Fenchel duality. The

variational formula expresses H(Q) as an average of the operator against the optimal

invariant measure, generalizing the linear case. Several nontrivial analytic formulas

for H(Q) are obtained. These formulas are compared to numerical simulations, using

both PDE and variational methods. We also perform a numerical study of convergence

rates for homogenization in the periodic and random setting and compare these to

theoretical results.

2.1 INTRODUCTION

We consider homogenization of the periodic, convex, uniformly elliptic Hamilton-Jacobi-
Bellman operator

H(Q, y) = sup
α∈A

Lα(Q, y) = sup
α∈A
{−A(y, α) : Q− h(y, α)} . (2.1)

Note that H(Q, y) is convex in Q. Let A be a convex and closed control set, and let
A : Td × A → Sd, where Sd is the space of d × d symmetric matrices, and Td is the d-
dimensional torus. Let h : Td ×A → R be continuous and convex in α. We assume that A
is uniformly elliptic, with 0� λI � A� ΛI . If A is not compact, then we also require h
to be superlinear in α, that is

lim
|α|→∞

h(y, α)
|α|

=∞, ∀y ∈ Td.

We will make use of the following result, stated in Corollary 2.1.4, and which follows
from Theorem 3.2.2 below. Consider an admissible control α(y), α : Td 7→ A, and suppress
writing the dependence on y explicitly. Let Lα be the corresponding linear operator,

Lα(y)(Q, y) = −A (y, α(y)) : Q− h (y, α(y)) . (2.2)

7
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Let Lα(Q) be the homogenized linear operator. Then

Lα(Q) ≤ H(Q). (2.3)

Equality holds when the control corresponds to linearizing H(Q, y) in Q about the cor-
responding solution uQ of the cell problem (see Definition 3.4 below, or [Eva89, Eva92]).
That is, when a(y) satisfies

Lα(y)(Q+D2uQ, y) = H(Q+D2uQ(y), y) = H(Q).

Equivalently, equality holds when the support of the optimal invariant measure (see
Definition 2.1.2) concentrates on α(y).

In Section 2.2 we consider four example problems. One example is the maximum of
two linear operators. In this case, we obtain a formula for H(Q), which is new (as far as
we know). The second example is one dimensional, but with a quadratic nonlinearity.
In this case, by considering constant controls, we find a lower bound for H(Q) which is
numerically verified to be sharp.

The third example is a two dimensional Pucci operator on stripes. In [FO18b] we
homogenized Pucci operators, mainly with checkerboard coefficients. There we did not
require convexity of the operator. We obtained accurate results for values of Q away from
the singularities of the operators by simply linearizing the operator about Q. However,
for stripes coefficients, the linearization about Q is not accurate. Here, we linearize about
a control, and find the optimal constant control which corresponds to a control direction
which depends on both the eigenvectors of Q and the orientation of the stripes. When
compared numerically to H(Q), this control gives very accurate results, away from the
singularities. Near the singularities, there is still a small nonzero error. In [FO18b] we also
established upper bounds for the linear homogenization error. These estimates included a
term which decreased with the distance to the singular set of the operators. Similar results
apply here as well.

The last example is a separable operator in one dimension, H(Q, y) = a(y)H0(Q). We
obtain the exact representation H(Q) = HM(a)H0(Q), where HM(a) is the harmonic mean
of a.

We compared our estimates for H(Q) to numerical results. We computed H(Q) numer-
ically using two methods: by solving the PDE for the cell problem, and by using linear
programming to solve for the invariant measure. We also considered the case of random
coefficients, and we found that very similar formulas for Lα(Q) hold in the random setting.

We also computed rates of convergence for H(Q). In the periodic case, we obtained
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second order convergence rates, O(ε2), in one dimension. In the random setting we
obtained a convergence rate of O(ε1/2), again in one dimension. These are consistent with
the theoretical results we mention below.

2.1.1 Related work

We know of few analytical solutions H(Q), other than the formula for a first order Hamil-
tonian in one dimension which can be found in the early paper [LPV87]. In [FO18b] we
obtained an approximation of H(Q) in terms of its linearization about Q. The error of
this approximation depends only on a generalization of the semiconcavity constant of
the operator. However, in [FO18b] we found examples of Pucci type operators where the
numerically compute value of H(Q) is very close to the approximation, for values of Q
away from the corners of the operator.

For a general reference on theoretical and numerical homogenization in this context,
we refer to the review paper [ES08].

A numerical method which uses the inf sup formula for the first order case was devel-
oped in [GO04]. In [OTV09] we studied homogenization of convex (first order) Hamilton-
Jacobi equations; some exact formulas in the periodic setting can be found there. Recently
[CC16] studied numerical homogenization of mainly first order equations, along with one
dimensional second order equations. In [CG08] the problem of homogenization of a Pucci
type equation with checkerboard coefficients was studied. In that case, our results are
close to, but different from theirs, see [FO18b].

In the random setting, the first qualitative homogenization results for fully nonlin-
ear uniformly elliptic operators were obtained in [CSW05], followed by [CS10] which
established a logarithmic estimate for convergence rates in strongly mixing environments.
Algebraic convergence estimates were established in [AS14], where it was shown that in a
uniformly mixing environment,

P
[
‖uε − ū‖∞ ≥ Cεβ

]
≤ Cεβ,

where C and β are constants that do not depend on ε. In the periodic case [CM09], proved
that the order of convergence for the cell problem is O(ε2), when the HJB operator does
not depend on first order terms or the macroscopic scale.

2.1.2 Background Theory

In the periodic uniformly convex setting, the homogenized operator can be obtained by
solving the cell problem.
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Definition 2.1.1 (Cell problem). Given H as in (2.1), for each Q ∈ Sd, there is a unique value
H(Q) and a periodic function uQ(y) which is a viscosity solution of the cell problem

H(Q+D2uQ(y), y) = H(Q). (2.4)

Because the operator H is uniformly elliptic, one can show that both the value H(Q)
and the solution uQ exist and are unique, and that uQ ∈ C2(Td) [Eva89].

In the linear case, we may use the Fredholm Alternative to find the invariant measure,
and the homogenized operator is then obtained by averaging against the invariant measure,
see for example [BLP11] and [FO09]. That is, under an integral compatibility condition,
there is a unique invariant probability measure, ρ, which solves D2 : (A(y)ρ) = 0, and the
homogenized PDE operator is L̄(Q) = Ā : Q+ h̄ where Ā =

∫
Td A dρ and h̄ =

∫
Td h dρ.

In the nonlinear case, the homogenized operator may still be found by averaging
against the optimal invariant measure (see [Gom05] or [IMT16]).

Definition 2.1.2 (Optimal invariant measure). Let Pr(Td × A) denote the space of Borel
probability measures on Td × A. For ρ ∈ Pr(Td × A), we say ρ is an invariant measure if
L∗0ρ(y, α) = 0 hold in the weak sense, by which we mean∫

Td×A
A(y, α) : D2ϕ(y) dρ(y, α) = 0, ∀ϕ ∈ C2(Td). (2.5)

Define

H̄LP (Q) = sup
ρ∈Pr(Td×A)

{∫
Lα(Q, y) dρ(y, α)

∣∣∣∣ L∗0ρ = 0
}
, (2.6)

The fact that (2.6) and (3.4) give the same value is established in Theorem 2.1.3, a proof
of which may be found in [Gom05] or [IMT16]. The result follows from duality and
convex analysis, in particular the theorem of Fenchel-Rockafeller.

Theorem 2.1.3. Let H(Q) be defined by (3.4) and HLP (Q) be defined by (2.6). Then

H(Q) = H̄LP (Q).

Remark 2.1. The formula above expresses an optimal invariant measure as a maximizer of
the functional in (2.6), and the homogenized operator as the average of Lα(Q, y) against
an optimal invariant measure.

Note that while the optimal invariant measure depends on Q, the set of invariant
measures does not. This allows us to sometimes find H̄(Q) for all Q once the invariant
measures are determined. While H̄(Q) does not depend on how we represent H(Q, y) in
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(2.1), the set of invariant measure does. So a more concise representation of the operator
can lead to a smaller set of invariant measures.

Corollary 2.1.4. Let H(Q) defined by (3.4) and let Lα(Q) be the homogenization of (2.2). Then
Lα(Q) ≤ H(Q).

Proof. Lα(Q) is obtained by averaging Lα(Q, y) against ρα, the invariant measure with
support on the graph α(y) and satisfying D2 (A(y, α(y)ρα) = 0. Inequality follows from
(2.6) and Theorem 3.2.2.

2.2 ESTIMATES FROM L INEARIZATION

In this section we apply (2.3), by considering specific operators where we can obtain
analytical values for the homogenized linear operator Lα(Q). The general procedure is
to put the operator in HJB form (2.1), solve for an invariant measure satisfying (2.5) for a
fixed control at the linear operator Lα, homogenize the linear operator, and then maximize
over all controls.

2.2.1 Pucci type operators on stripes

Consider the following Pucci type operator.

Definition 2.2.1. Let y ∈ T2 and Q ∈ S2. Write λmax(Q), λmin(Q) for the maximum and
minimum eigenvalues of Q, respectively. Given b(y) ≥ 0 and a(y) > 0, define the convex Pucci
type operator

F a,b(Q, y) = a(y) TrQ+ b(y)λ+
max(Q) (2.7)

where t+ := max {t, 0}

Remark 2.2. The operator (3.19) may be recast into the form of (2.1) by setting

Lv(Q, y) = A(y,v) : Q

where A(y,v) = a(y)I + b(y)v⊗ v and A = {|v| ≤ 1}. Note that h(y,v) ≡ 0.

An alternative representation is given by

F a,b(Q, y) = a(y) TrQ+ b(y) sup
|v|=1,v=0

{
vTQv

}
. (2.8)

With the operator in this form, it is easy to see that whenQ is negative definite, the operator
is linear, and the operator homogenizes to the harmonic mean of a. The level sets of this
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operator have corners on the negative axes and on the positive diagonal in the λ1 − λ2

plane. Elsewhere, the operator is linear in λ1 and λ2.
For the rest of the discussion we restrict to Q with at least one positive eigenvalue. In

this case, we may restrict A to the set A = {|v| = 1}. Then the control set is determined by

a single parameter: we parameterize vα =
[√

α
√

1− α
]
, and write

Bα := vα ⊗ vα =

 α
√
α(1− α)√

α(1− α) 1− α

 . (2.9)

Then the linear component of (2.1) is Lα(Q, y) = [a(y)I + b(y)Bα] : Q and A = [0, 1]. This
is the form of the operator which we use below.

Homogenization Formula 1 (Pucci with stripes). Consider F a,b(Q, y) given by (3.19). Con-
sider piecewise constant stripes, with

a(y1) = 1, b(y1) =

0, 0 ≤ y1 ≤ 1
2

b0,
1
2 ≤ y1 ≤ 1

(2.10)

For Q 6� 0 and for α ∈ [0, 1] define

Lα(Q) = TrQ+ b0

2 + b0α

(
q22 + α(q11 − q22) + 2q12

√
α− α2

)
,

Then
F a,b(Q) ≥ sup

α∈[0,1]
Lα(Q), Q 6� 0 (2.11)

and
F a,b(Q) = HM(a) TrQ, Q � 0.

Remark 2.3. This formula is obtained by considering constant controls in the direction of
a given unit vector parameterized by α. We homogenize the linearization Lα about this
control, and then optimize over the choice of α.

The term in (2.11) can be simplified further analytically, but the formula becomes
complicated. It is more convenient to solve it numerically using one variable equation
solvers.

Proof of Homogenization Formula 1. We need only consider the caseQ 6� 0 since the operator
is linear otherwise.

1. Since we are on stripes, we restrict to invariant measures which depend only on
y1. The invariant measure must satisfy the constraint (2.5). For a choice of control α(y1)



Chapter 2. Homogenization of Fully Nonlinear PDEs 13

depending only on y1, this constraint is

∂11
(
c(y1)pα(y1)(y1)

)
= 0,

where c(y1) := a(y1) + b(y1)α(y1). The solution is pα(·)(y1) = HM(c(y1))
c(y1) .

2. Next with coefficients given by (2.10), restrict to α(y1) to be constant on b(y1) = b0.

3. For these measures, the homogenized linear operator becomes

Lα(Q) = HM(a) TrQ+
∫

T1
b(y1) Tr (BαQ) pα(y)dy (2.12)

after integrating out the invariant measure from the Laplacian term.

Use the representation Bα given by (2.9) to simplify (2.12) to obtain the expression
which is maximized in (2.11).

2.2.2 Maximum of two linear operators

Definition 2.2.2. Given a (constant) symmetric positive definite matrix, A, positive functions
a0(y), a1(y) > 0, and the constant h. Define

H(Q, y) = max{−a0(y),−a0(y)− a1(y)}A : Q+ h (2.13)

This operator may be written in HJB form (2.1) by writing

H(Q, y) = max
α∈[0,1]

Lα(Q, y), Lα(Q, y) ≡ −(a0(y) + αa1(y))A : Q+ h.

Homogenization Formula 2 (Maximum of two linear operators). Let H(Q, y) be given by
(2.13). Then

H̄(Q) = max{−HM(a0)A : Q,−HM(a0 + a1)A : Q}+ h (2.14)

Proof. 1. For any choice α(y), the corresponding invariant measure satisfying the constraint
(2.5) is is given by

pα(y) = HM(b(y, α(y))
b(y, α(y)) ,

where b(y, α(y)) = a0(y) + α(y)a1(y). The homogenized linear operator is then

Lα(y)(Q) =
∫

Td
Lα(y)(Q, y) dpα(y) = HM(b(y, α(y)))A : Q+ h.

So from (2.3), we have
H(Q) = sup

α(·)
Lα(y)(Q).
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Notice that b = (a0(y) + αa1(y)) is increasing in α for each y. Moreover, it is easy to verify
that the Harmonic Mean is an increasing function of b. Thus, depending on the sign of
A : Q, the optimal value is achieved by either α(y) ≡ 0 or α(y) ≡ 1, accordingly. This
gives (2.14).

2.2.3 A one dimensional quadratic operator

Definition 2.2.3. In one dimension, with constants, c, a > 0 and the function b(y) ≥ 0, consider

H(Q, y) = aQ+ b(y)(Q+)2 − c.

It is easy to verify that

H(Q, y) = max
α≥0

Lα(Q, y), Lα(Q, y) = A(y, α)Q− h(y, α)

with A(y, α) = a+ 2b(y)α and h(y, α) = b(y)α2 + c.

Homogenization Formula 3. Let H(Q, y) be given as in Definition 2.2.3. Suppose b is
piecewise constant,

b(y) =

0, 0 ≤ y ≤ 1
2

b0,
1
2 ≤ y ≤ 1

(2.15)

Then
H(Q) ≥ a(Q+Q+)− c+ a2

b0
− 1
b0

√
a3(a+ 2b0Q+). (2.16)

Proof. Consider constant controls α(y) ≡ α. In this case the invariant measure pα(y)
satisfying (2.5) is given by

pα(y) =


a+ 2b0α

a+ b0α
, 0 ≤ y ≤ 1

2
a

a+ b0α
,

1
2 ≤ y ≤ 1.

(2.17)

Then

L̄α(Q) = 〈Lα, pα〉 (2.18)

= a (a+ 2b0α)
a+ b0α

[
Q− 1

2

(
c

a
+ b0α

2 + c

a+ 2b0α

)]
. (2.19)

By (2.3),
H(Q) ≥ max

α∈[0,Q]
Lα(Q)
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Next, maximize over α. This is accomplished by solving for the roots of the derivative of
this expression with respect to α. We obtain

α∗(Q) = 1
b0

(
−a+

√
a(a+ 2b0Q+)

)
. (2.20)

Thus the estimate is given by (2.19) with α given by (2.20). Upon simplification, we
obtain (2.16).

2.2.4 Separable operator in one dimension

Definition 2.2.4. Define a separable operator in one dimension as

H(Q, y) = a(y)H0(Q) (2.21)

with a(y) > 0 and H0(Q) = supα {αQ− h(α)}.

Homogenization Formula 4. Let H(Q, y) be a separable operator in one dimension. Sup-
pose also that α∗ = arg maxα {αQ− h(α)} is a singleton. Then

H(Q) = HM(a)H0(Q).

Proof. From Theorem 3.2.2 we have that

H(Q) = sup
ρ∈Pr(A×T)

{∫
A×T

a(y) (αQ− h(α)) dρ
∣∣∣∣ (a(y)ρ)yy = 0

}
. (2.22)

In one dimension we can solve the equation (2.5) for the invariant measure ρ explicitly,

ρ(y, α) = c(α)
a(y) (2.23)

where c(α) is chosen to ensure ρ ∈ Pr(A× T). That is, we need that
∫
A c(α) dα = HM(a).

With this constraint, (2.22) becomes

H(Q) = sup
c(α)

{∫
A
c(α) (αQ− h(α)) dα

∣∣∣∣ ∫
A
c(α) dα = HM(a)

}
(2.24)

≤ HM(a) sup
α
{αQ− h(α)} . (2.25)

Equality is achieved by setting c(α) = HM(a)δ(α− α∗).
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2.3 NUMERICAL RESULTS

Here we compare the results of Section 2.2 with the numerical homogenization of the
operators.

Remark 2.4 (Numerical methods). H(Q) was computed with two methods. In the first,
the equation (2.1) was discretized with finite differences. A steady state solution was
computed iteratively by Euler step to the parabolic equation ut + H(Q + D2u, y). We
used a filtered scheme [FO13] to choose between a monotone finite difference scheme and
standard accurate finite differences. However the standard finite difference scheme was
always chosen by the filtered scheme, likely because solutions are C2 and periodic.

We also computed H̄LP (Q) by discretizing the control space A and formulating the
problem (2.6) as a discrete linear programming problem. Derivatives were discretized via
standard second order finite differences. We then solved this LP using the package CVX
[GB14, GB08] with the SeDuMi solver [Stu99].

Throughout we set h(y, α) = c = 1, and subtracted this constant from H(Q), so as to
avoid trivial solutions.

2.3.1 Pucci type operator on stripes

We compared the analytical formula, Homogenization Formula 1, with numerically ho-
mogenized values. This required solving a one-variable optimization problem. We
used piecewise constant coefficients, where the operator was either TrQ, or F 1,2(Q) =
1 TrQ + 2λ+

max(Q). The error profile of the analytic lower bound against the numerical
homogenization is plotted in Figure 2.1a, for a set of diagonal Q. In the vicinity of the line
λ1(Q) = λ2(Q) the error is on the order of 1e−1; elsewhere the error is less than 1e−2.

We contrast this homogenization approach with the method of homogenizing the
linearized operator [FO18b]. The homogenizing error by first linearizing the operator is
much greater than the error given by Formula 1, as can be seen by comparing Figures 2.1a
and 2.1b.

There is a symmetry in H̄(Q). We represent

Q = RT
φdiag(λ1, λ2)Rφ

where Rφ is a rotation matrix. When φ = π/4, the orientation of the stripes is at an equal
angle to the eigenvectors of Q, then H̄(Q) is symmetric about λ1 = λ2. More generally
H̄(Q) is symmetric under reflections in the angle about the same line of symmetry:

H̄(Q|φ=π/4−γ) = H̄(Q|π/4+γ), for |γ| ≤ π/4.
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Figure 2.1: Comparison between homogenization error using an invariant measure, and
by homogenizing the linearized operator. In this example the operator is given by (2.10),
with b0 = 2. Here Q = diag(λ1, λ2). In the third quadrant, the operator is linear, and the
error was zero up to machine precision. Figure 2.1a: error of Formula 1, the error is 1e−8
is most of the domain, with the 1e−2 level set shown. Figure 2.1b: error of homogenizing
the linearized operator. There the error is order one, outside the third quadrant.

2.3.2 Maximum of two linear operators, in one and two dimensions

We numerically validated Homogenization Formula 2, for the maximum of two linear
operators. We considered the case when the dimension is one, and we took A = 1. The
interval [0, 1] was discretized into 20 equal sized pieces. The coefficients a0(y) and a1(y)
were piecewise constant on these equal-sized pieces. We took h(y) to be constant. In Figure
2.2 we let a0 alternate between 1 and 1

2 , and let a1 alternate between 3
2 and 5

2 . The val-
ues of the analytically homogenized operator are indistinguishable from the numerically
computed values, for discrete values of Q, using both the direct method and the dual
method. Even at the discontinuity Q = 0, the formula agrees with the numerical homog-
enization up to machine precision. For reference, we also plotted H1(Q) = minyH(Q, y)
and H2(Q) = maxyH(Q, y). We computed many different examples and obtained similar
results. (Note in this example, the invariant measure is piecewise quadratic, so the numer-
ical method is very accurate.) We also visualized the numerical invariant measure, and
found that it agreed with our formula.

We also numerically validated Formula 2 in two dimensions, and obtained similar
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Figure 2.2: Validation of Formula 2, homogenization of the maximum of two linear
operators, (2.13). Lines represent H̄(Q) and each of the operators Hi(Q).

results: in this case the analytic formula and the numerical simulations agree up to 1e−12.

2.3.3 The quadratic operator

Next we considered the example from §2.2.3, Homogenization Formula 3, for the operator

H(Q, y) = aQ+ b(y)(Q+)2 − c.

Here c is a constant. We numerically homogenized this operator on the periodic domain
[0, 1], divided into 20 pieces. The coefficients are piecewise constant on equal intervals. As
illustrated in Figure 2.3 the analytic homogenization and the numerically homogenized
operator are indistinguishable. As in the previous operator (maximum of two linear
operators), even at Q = 0 the formula agrees with the numerical homogenization up
to machine precision. Again, we also plot H1(Q) = minyH(Q, y) = aQ and H2(Q) =
maxyH(Q, y) = aQ+ b0(Q+)2.

2.4 NUMERICAL RATES OF CONVERGENCE IN THE PERIODIC AND RANDOM CASE

Using the exact analytical formulas of Section 2.2 (Formula 2 and Formula 3), we investigate
empirical rates of convergence of the small-scale solutions uε to the solution ū of the
homogenized operator. Although our theoretical results were for the periodic case, we
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Figure 2.3: Validation of Formula 3. Value of H1(Q), H2(Q), the numerically homogenized
operators, and the analytic homogenized operator.

found that the same formulas applied in the random case. This allows us to study empirical
convergence rates in the random case as well.

We solved the Dirichlet problem with zero boundary conditions on the interval [0, 1]
for the two different operators, in both the random and periodic case. The operators were
the maximum of two linear operators, Formula 2; and the quadratic operator, Formula 3.
These are both one dimensional examples.

We used a sequence of decreasing cell sizes, of width ε. We used 1 grid point per cell.

We also solved the same problem with the homogenized operator. Numerically we
obtained two solutions, uε, and ū corresponding toH

ε(D2uε(x), x) = 1

uε(x) = 0, x ∈ ∂[0, 1]
and

H̄(D2ū(x), x) = 1

ū(x) = 0, x ∈ ∂[0, 1].
(2.26)

We chose coefficients which were piecewise constant. Let Hε(Q, x) be the operator
parameterized by checkerboard square width ε. We checked convergence for both the
periodic case, and the random case. In the periodic case, the unhomogenized operator
alternates between two constituent operators H1 and H2 between the checkerboard cells.
In the random case, in each checkerboard square we randomly sample from the two
constituent operators with probability 1

2 .

In the random case, we observed convergence rates consistent with O(ε 1
2 ) in the sup-
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Figure 2.4: Figure 2.4a: Periodic coefficients: rate of convergence uε → ū. Figure 2.4b:
Random coefficients: rate of convergence. We plot 90% confidence intervals for a normal
distribution.

Table 2.1: Empirical rates of convergence for the two operators.

Operator Periodic,
‖ · ‖∞

Random,
‖ · ‖∞

Random,
‖ · ‖2

Random,
‖ · ‖1

Max of two in 1D 1.95 0.51 0.49 0.50
Quadratic in 1D 1.95 0.48 0.42 0.41

norm for both operators. In the periodic case, we observed convergence rates consistent
with O(ε2).

Figure 2.4 presents the observed rates of convergence as uε → ū in the sup-norm. In
the periodic setting, the order is nearly O(ε2): we estimate that the order of convergence is
O(ε1.95). In the random setting, we solved each problem 20 times, drawing the random
checkerboard anew at each iteration. We then used least squares to estimate the order
of convergence. We summarize these convergence estimates in Table 2.1. It appears that
convergence in the sup-norm is roughly O(ε 1

2 ) on the random checkerboard. We also
measured the errors in the `2 and `1 norms.

2.5 CONCLUSIONS

In this article we investigated the accuracy of approximating nonlinear homogenization
by the homogenization of a linearization of the operator. In previous work [FO18b], we
simply linearized about a constant. There, we obtained very accurate for checkerboard
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type coefficients, but significant errors in the case of stripes. In this article, we restricted to
convex operators. This allowed us to write operators as the supremum of linear operators.
For any linearization over a choice of control α(y)

Lα(Q) ≤ H(Q)

with equality when α(y) is optimal.
We applied this formula to three examples. For the example of a maximum of two

linear operators, we obtained an exact result, given by the maximum of two harmonic
means (see (2.14)). For a quadratically nonlinear one dimensional operator, we restricted
to piecewise constant controls and optimized over the value of the control. This results in
a lower bound which was verified by numerical simulations to be exact.

Finally, we consider the Pucci-type operator with stripe coefficients. In this case, the
controls depended on a choice of direction vector, which in two dimensions resulted
in a one parameter optimization problem for Lα(Q). The solution of this problem was
verified by numerical simulations to be nearly exact over parameter values away from the
singularities of the operator. For other values of Q it achieved a small (a few percentages)
relative error.

We also consider the numerical convergence rates of the homogenization problem in
the scale parameter, obtaining results consistent with recent analytical results, in both the
periodic and random case.





CHAPTER 3

APPROXIMATE HOMOGENIZATION OF FULLY NONLINEAR

ELLIPTIC PDES: ESTIMATES AND NUMERICAL RESULTS FOR PUCCI

TYPE EQUATIONS

Abstract

We are interested in the shape of the homogenized operator F (Q) for PDEs which

have the structure of a nonlinear Pucci operator. A typical operator is Ha1,a2(Q, x) =
a1(x)λmin(Q) + a2(x)λmax(Q). Linearization of the operator leads to a non-divergence

form homogenization problem, which can be solved by averaging against the invariant

measure. We estimate the error obtained by linearization based on semi-concavity

estimates on the nonlinear operator. These estimates show that away from high

curvature regions, the linearization can be accurate. Numerical results show that for

many values of Q, the linearization is highly accurate, and that even near corners, the

error can be small (a few percent) even for relatively wide ranges of the coefficients.

3.1 INTRODUCTION

In this article we consider fully nonlinear, uniformly elliptic PDEs F (Q, x). We are inter-
ested in approximating the homogenized operator F (Q). We focus on Pucci-type PDE
operators in two dimensions. The restriction to two dimensions is for computational
simplicity and also for visualization purposes. We consider periodic coefficients, although
in our numerical experiments we obtained very similar results with random coefficients.

The approach we take is to linearize the operator about the value Q, and to homogenize
the linearized operator L(Q). The solution of the linear homogenization problem can
be expressed (and in some cases solved analytically) by averaging against the invariant
measure. The result is given by

LQ(Q) =
∫
F (Q, x)ρQ(x)dx

where ρQ is the invariant measure of the corresponding linear problem. We estimate the
linearization error

E(Q) ≡ F (Q)− LQ(Q),

23
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For convex operators, the analysis gives a one sided bound on the error. In general,
we obtain upper or lower bounds on the error, which depend on generalized semi-
concavity/convexity estimates of F , as well as on the solution of the cell problem uQ

for the nonlinear problem. These results are stated in Theorem 3.2.2 below.
For theoretical results on nonlinear homogenization, we refer to the review [ES08] as

well as recent works on rates of convergence (for example [AS14]). There are fewer works
which aim to determine the values F (Q). Few analytical results are available. Numerical
homogenizing results for Pucci type operators can be found in [CG08] using a least-squares
formulation. We also mention numerical work by [GO04] and [OTV09] and [LYZ11] in the
first order case, as well as [FO09] in the second order linear non-divergence case.

The typical operator we consider herein is defined next. Below, we consider more
operators, including the usual convex Pucci Maximal operator.

Definition 3.1.1 (Fully nonlinear elliptic operator F (Q, x) and linearization). We are given
F : Sd×Td → R which is uniformly elliptic, Lipschitz continuous in the first variable and bounded
in the second variable. Suppose for a given Q, that∇QF (Q, x) exists for all x. Write

LQ(M,x) = ∇QF (Q, x) · (M −Q) + F (Q, x) (3.1)

for the affine approximation to F at Q.

Given Q ∈ Sd, write, for d = 2, λmin(Q) and λmax(Q) for the smaller, and larger
eigenvalues of Q, respectively.

Example 3.1 (Typical PDE operator). Given δ > 0, and periodic functions a1(y), a2(y) ≥ δ.
Define the homogeneous order one PDE operator

Ha1,a2(Q, x) = a1(x)λmin(Q) + a2(x)λmax(Q) (3.2)

Suppose Q has unit eigenvectors v1, v2 corresponding to the eigenvalues λmin(Q), λmax(Q),
respectively. Then the linearization at Q, of Ha1,a2 is given by

LQ(M,x) = a1(x)vT1 Mv1 + a2(x)vT2 Mv2 (3.3)

Remark 3.1 (Typical results). We consider the case of coefficients which are either (i) periodic
checkerboards or (ii) random checkerboards. We compute both the nonlinear homoge-
nization F (Q) and the homogenized linear operator LQ(Q). In practice, the numerically
computed error is insignificant, less than 1e−8 for values of Q, away from regions of
high curvature of F with respect to Q. Areas where the error is significant correspond
to regions where the semi-concavity constants are large. A typical result is displayed in
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Figure 3.1: Plot of a single level set of LQ(Q) and F (Q). This example is typical. In this case
the coefficients are on a random checkerboard. The error is only visible near the corner of
the level set of the operator. F (Q, y) a Pucci-type operator, see Definition 3.3.1 below. The
details of the coefficients can be found in Section 3.4.

Figure 3.1. The solid line is a level set of the homogenized linear operator LQ(Q). The dots
are numerical computations of F (Q). The error is very small, except at one point, which
corresponds to a corner of the operator. (Dashed lines indicate underlying operators which
comprise F (Q, x).

Our analysis depends on the shape of F (Q, x) in Q, but not on the pattern of the
coefficients in x. We also considered the case of stripe coefficients. For separable examples,
the linear approximation is still effective. However, we also found nonseparable examples
where the linear approximation is poor, which we will address in a companion paper
[FO18a] with a closer bound.

3.1.1 Background: cell problem and linear homogenization

In this section, we review background material on the cell problem for the nonlinear PDE,
and on linear homogenization. We also give an exact formula in one dimension for a
separable operator.

Given a(y) : T → R, positive, a(y) > 0, write HM(a) =
(∫

T
dy
a(y)

)−1
for the harmonic

mean of a.
In the linear case, L can be found by averaging against the invariant measure, by

solving the adjoint equation (see [BLP11] or [FO09]), which yields the following formula.
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Lemma 3.1.2 (Linear Homogenization Formula). The separable linear operator L(M,x) =
a(x)A0 : M + f(x) has invariant measure ρ(x) = HM(a)/a(x) and homogenizes to L(Q) =
HM(a)A0 : Q+ f , where f(x) =

∫
f(x) dρ(x).

For the nonlinear operator F , the homogenized operator is given by solving the cell
problem, see [Eva89].

Definition 3.1.3 (Solution of the cell problem). Given F uniformly elliptic, for each Q ∈ Sd,
there is a unique value F (Q) and a periodic function uQ(y) which is a viscosity solution of the cell
problem

F (Q+D2uQ(y), y) = F (Q). (3.4)

Lemma 3.1.4 (Homogenization of linearized operator). Consider the nonlinear elliptic op-
erator F (Q, x), and suppose for a given Q, that ∇QF (Q, x) exists for all x. The corresponding
linearization at Q is given by (3.1). Let ρQ be the corresponding unique invariant probability
measure, which is the solution of the adjoint equation

D2 : (∇QF (Q, y)ρQ(y)) = 0, (3.5)

interpreted in the weak sense. Then LQ(Q), the homogenized linearized operator evaluated at Q, is
given by

LQ(Q) =
∫

Td
F (Q, y) dρQ(y). (3.6)

Proof. The invariant measure ρQ solves (3.5), see [BLP11] or [FO09]. Apply (3.1) at M = Q

and then integrate against ρQ to obtain the result.

3.2 MAIN RESULT

3.2.1 Generalized semiconcavity estimates on the operators

Consider the uniformly elliptic operator F (Q, x), where Q ∈ Sd and x ∈ Td. We assume
the following.

Assumption 3.2.1 (Quadratically dominated for F (Q, x)). Let F be as in Definition 3.1.1.
Suppose for a given Q, that∇QF (Q, x) exists for all x. Write ‖Q‖ for the Frobenious norm
of Q. We say that F is quadratically dominated above at Q if there is a bounded function
C+(Q, x) : Td → R such that

F (M,x)− LQ(M,x) ≤ C+(Q, x)‖M −Q‖
2

2 , for all (M,x) ∈ Sd × Td (3.7)
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and similarly, F is quadratically dominated below atQ if there is a bounded functionC−(Q, x) :
Td → R such that

F (M,x)− LQ(M,x) ≥ C−(Q, x)‖M −Q‖
2

2 , for all (M,x) ∈ Sd × Td (3.8)

Remark 3.2. If F is convex in Q, then C−(Q, y) = 0. Similarly if F is concave in Q,
C+(Q, y) = 0. More generally if F is semi-concave, or semi-convex in Q, then we can set
C±(Q, y) = C±(y), to be a constant independent of Q. However, we require the definition
above for when the semi-concavity or semi-convexity conditions in Q do not hold, as is
the case for the Pucci-type operators defined below.

Example 3.2. Let x ∈ R and set f(x) = max {ax, bx}. Since f is convex, we can take
C−(x) = 0 in (3.8). We claim that for x 6= 0, (3.7) holds with

C+(x) = |a− b|2x , (3.9)

and this is the best constant. See Figure 3.2.

Derivation of (3.9). Expand f(x+ y) about the point x, for x 6= 0. To test (3.7), replace the
inequality with an equality to obtain a quadratic equation. By requiring that there is only
one root, we obtain an equation for the discriminant of the quadratic, which can be solved
to obtain the result.

3.2.2 Main Theorem

Theorem 3.2.2. Suppose F satisfies Assumptions 3.2.1 and uQ ∈ C2,α(Td) is a classical solution.
Let F (Q) be the homogenized operator at Q and let uQ be the corresponding solution of the cell
problem given by (3.4). Let the homogenization of the linearization of the operator be given by (3.6)
and let ρQ(y) be the corresponding invariant measure of the linearized problem (3.1). Write

C±(Q) = 1
2

∫
C±(Q, y)‖D2uQ(y)‖2 dρQ(y)

Then
C−(Q) ≤ F (Q)− LQ(Q) ≤ C+(Q) (3.10)

Remark 3.3. In the examples we consider below, C±(Q, y)→ 0 as dist(|Q|, S)→∞, for the
singular set of the operator. This gives control over the homogenization error for many
values of Q. Another term in the error is ‖D2uQ‖. In the homogeneous order one case,
we have uQ = 0 for Q = 0, so a continuity argument suggests that we may have control
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Figure 3.2: For the simple example f(x) = max {ax, bx}, the semi-concavity constant is
C(x) = C+(x) = |a−b|

2x .

of ‖D2uQ‖ for small values of Q. This is the case in one dimension in [FO18a], where we
obtain an analytical formula for uQxx through (3.16), which gives |uQxx| ≤ C|Q|.

The main theorem is a formal result in the sense that it relies on the fact that uQ is a
classical solution, which does not hold in general. If F is convex (or concave), then by a
famous theorem of Krylov and Evans [Kry84, Eva82], or [CC95], uQ ∈ C2(Td). However,
in general we are only guaranteed uQ ∈ C1,α(Td) [Jen88].

Proof. Subtract the linearization of F at Q evaluated at Q+D2uQ(y) from the equation for
the cell problem (3.4), to obtain

F (Q)− LQ(Q+D2uQ, y) = F (Q+D2uQ, y)− LQ(Q+D2uQ, y). (3.11)

From Assumption (3.2.1),

F (Q)− LQ(Q+D2uQ, y) ≤ C+(Q, y)‖D
2uQ‖2

2 (3.12)

and
F (Q)− LQ(Q+D2uQ, y) ≥ C−(Q, y)‖D

2uQ‖2

2 . (3.13)

Now integrate eqs. (3.12) and (3.13) against the invariant measure ρQ. This yields the upper
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and lower bounds (3.10), where we have used the fact that for all φ ∈ C2(Td),∫
Td
LQ(Q+D2φ, y) dρQ(y) =

∫
Td
F (Q, y) dρQ(y), (3.14)

which follows from integration by parts, since ρQ solves the adjoint equation (3.5).

3.2.3 Applications of the main result

We give two applications of the main result. In the first example, where the operator
is separable, we have an analytical formula for LQ(Q). In this case the estimates also
simplify. In the second, nonseparable example, we can find LQ(Q) by solving a single
linear homogenization problem, with coefficients given by the linearization (3.3).

Corollary 3.2.3. Consider the separable, purely second order operator

F (Q, y) = a(y)F0(Q)

for y ∈ Rd. Suppose that F0 is quadratically dominated with constants C−(Q) and C+(Q). Then,

C−(Q) ≤ F (Q)− HM(a)F0(Q) ≤ C+(Q) (3.15)

where
C±(Q) = 1

2C
±(Q) HM(a)

∫
Td
‖D2uQ(y)‖2 1

a(y) dy.

Proof. 1. The formula for the linearization,

LQ(Q) = HM(a)F0(Q)

follows from the Linear Homogenization Formula (Lemma 3.1.2).
2. From linearization, we have that ρQ(y) = HM(a)/a(y). Using the definition, then the

generalized semiconvexity/concavity constants for F (Q, y) are given by

C+(Q, y) = a(y)C+(Q), and C−(Q, y) = a(y)C−(Q).

Passing the constants and the invariant measure into Theorem 3.2.2 gives the bounds
provided by (3.15), since the coefficients a(y) cancel.

Remark 3.4. In a companion paper [FO18a], we show that for convex operators in one
dimension,

F (Q) = LQ(Q) = HM(a)F0(Q). (3.16)
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Corollary 3.2.4. Consider the operator Ha1,a2 given by (3.2). Then

∣∣∣Ha1,a2(Q)− LQ(Q)
∣∣∣

≤ 1
2|λmin(Q)− λmax(Q)|

∫
|a1(y)− a2(y)| ‖D2uQ(y)‖2 dρQ(y)

Proof. We apply Theorem 3.2.2 to Ha1,a2 given by (3.2). The linearization is given by (3.3).
The invariant measure of the linear problem is given by the solution of (3.5) and the
homogenized linear operator is given by (3.6) from Lemma 3.1.4.

The main step is to work out the generalized semi-concavity constants. We claim.

C+(Q, x) = (a2(x)− a1(x))+

|λmin − λmax|
, and C−(Q, x) = (a1(x)− a2(x))−

|λmin − λmax|
. (3.17)

To prove this we proceed in steps.

1. First, take q ∈ R2 and set f(q) = max(q1, q2). Then Lq(y) = ∇f(q) · y away from
the singular set q1 = q2, since the function is homogeneous of order one. The constant
C−(q) = 0, since f is convex. We claim the optimal choice for C+(q) is given by

C+(q) = 1
|q2 − q1|

for q1 6= q2. To see this, we require

max(y1, y2) ≤ ∇f(q) · y + C+(q)
2 |y − q|2.

It is easily verified that the extremal case for the inequality occurs when (y1, y2) = (q2, q1),
which leads to the condition

|q1 − q2| ≤ C+(q)|q1 − q2|2.

giving the result.

2. Let f(q1, q2) = a1 min(q1, q2) + a2 max(q1, q2). Rewrite f(q1, q2) = a1(q1 + q2) + (a2 −
a1) max(q1, q2). We can always subtract an affine function when computing the constants.
So the constants for f are the same as the constants for (a2 − a1) max(q1, q2). In this case,
using the result of step 1, we obtain

C+(x) = (a2 − a1)+

|q1 − q2|
, C−(x) = (a1 − a2)−

|q1 − q2|

3. Next consider for the two by two matrixQ, h(Q, x) = a1(x) min(q11, q22)+a2(x) max(q11, q22).
Then the previous step shows that the constants for h are given by the previous ones (with
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q11 replacing q1 and q22 replacing q2. Finally, since Ha1,a2 depends only on the eigenvalues
of Q, without loss of generality, we can choose a coordinate system where Q is diagonal
when computing the generalized semiconcavity constants. It remains to show that the
generalized semi-concavity condition holds for a matrix, M . If M is diagonal the condition
holds. But if M is not diagonal, then the change in the norm ‖M −Q‖2 can be controlled
by a constant, or absorbed into the definition of the norm.

3.3 COMPUTATIONAL SETTING

For our numerical experiments, we consider a wider class of separable and non-separable
operators.

3.3.1 PDE Operators

Definition 3.3.1 (Pucci-type operators). For δ > 0 and given functions 0 < δ ≤ a(y) ≤ A(y).
Write b(y) = A(y) − a(y). Also write t+ = max(t, 0). Define, for d = 2, the standard Pucci
maximal operator, the Pucci-type operator, the smoothed Pucci-type operator, and a Monge-Ampere
type operator respectively as

PA,a(Q, y) = a(y) TrQ+ b(y)
(
λ+

min(Q) + λ+
max(Q)

)
(3.18)

FA,a(Q, y) = a(y) TrQ+ b(y)λ+
max(Q). (3.19)

FA,a
k (Q, y) = a(y) TrQ+ b(y)Sk(λmin(Q), λmax(Q), 0) (3.20)

M(Q, y) = a(y)
(
Tr(Q) + λ+

min(Q)λ+
max(Q)

)
. (3.21)

Here, for x ∈ Rm, Sk(x) is the smoothed maximum function,

Sk(x) =
∑m
i=1 xi exp(kxi)∑m
i=1 exp(kxi)

. (3.22)

The function Sk goes to the max as k →∞, and to the average as k → 0.

Definition 3.3.2 (Periodic checkerboard, stripes, and random checkerboard coefficients).
Define

a0(y) =

1, y ∈ B

r, y ∈ W,
(3.23)

with r > 1. The sets B and W are either black and white squares of a checkerboard; alternating
black and white stripes of equal width; or a ‘random’ checkerboard, with black and white squares
distributed with equal probability, uniformly.
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Figure 3.3: Figure 3.3a: level set plot of several operators as function of the eigenvalues of
Q. Figure 3.3b: Level sets of an example Pucci operator, P
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Remark 3.5 (Representation and visualization of the operators). The definition above agrees
with the usual definition of the Pucci operator,

PA,a(Q, y) = sup{M : Q | a(y)I �M � A(y)I}. (3.24)

We can also rewrite

FA,a(Q, y) =

a(y) TrQ Q negative definite

HA,a(Q, x), otherwise.

Example 3.3. For the Pucci operator PA,a(Q, x) given by (3.18), by convexity, C−(Q, x) = 0
and

C+(Q, x) =

max
{

b(x)
Tr(Q) ,

A(x)
2λmin

}
, if λmin, λmax > 0

b(x)
2 min(|λmin|,|λmax|) , otherwise.

(3.25)

3.3.2 Numerical Method details

In order to compute the errors, as a function of Q, we used a grid in the λ1 − λ2 plane, and
computed the linear and nonlinear homogenization at the grid points. Typical values can
be see in Figure 3.3b, where black points indicate the grid values of Q tested.
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We remark on the numerical methods used throughout. To compute F (Q) directly, we
discretized with finite differences and solved the parabolic equation ut+F (Q+D2u, y) using
an explicit Euler method, to iteratively compute a steady state solution. We discretized
using a convergent monotone scheme [Obe06] and also using standard finite differences.
The accuracy of the monotone scheme was less than the standard finite differences, so we
implemented a filtered scheme [FO13]. In practice, the filtered scheme always selected the
accurate scheme, so in this instance, perhaps because the solutions are C2 and periodic,
standard finite differences appear to converge.

For all the computations, to avoid trivial solutions, we solved with a right hand side
function equal to a constant, and then subtracted the same constant from F (Q).

The computational domain was the torus [0, 1]2, divided into 20 × 20 equal squares,
each with 16 grid points per square.

Remark 3.6 (Comparison with [CG08]). The problem of homogenizing a0(y)FA,a(Q), was
considered in [CG08]. In their case, the spatial coefficient a0(y) varies periodically and
smoothly between 2 and 3, and their homogenized value for a0 was 2.5 (which was the
average of the coefficient a0(x, y) = cos(πx) cos(πy)). Our results using these coefficients
was a0 = 2.486, which is very close to the average. However with coefficients which are
more spread out, we obtain values far from the average.

3.4 NUMERICAL RESULTS

3.4.1 Numerical Results: separable operators

Here we check the homogenization error of the bound for separable operators in two
dimensions, from Corollory 3.2.3. We are in the convex case, so the lower bound is zero.

We performed numerical simulations on four operators, see Definition 3.3.1.

• a0(y)P 3,1(Q)

• a0(y)F 3,1(Q)

• a0(y)F 3,1
k (Q), with k = 10 and k = 0.1

• a0(y)M(Q)

In Figure 3.4 we compare the error F (Q)− LQ(Q) for a separable Pucci operator on a
checkerboard, we also illustrate the constant C+(Q, y). In this case we have an analytical
formula for LQ(Q)). This figure illustrates the Main Theorem: when the constant is large
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Figure 3.4: Homogenization of a separable Pucci example operator, a(y)P 3,1, on a periodic
checker board, with coefficients of 1 or 2 (r = 2). 3.4a: Error F (Q)− LQ(Q). Figure 3.4b:
An upper bound of the semi-concavity constant C+(Q, y). The error is 1e−6 or less in the
blue part of the domain. In the yellow region it goes from 0.01 up to 0.15. The regions
where the error is small coincide with smaller values of the semi-concavity constant.

the error from the linearization is high. The error is less than 1e−6 outside of a small region
about the axis, and on the order of 0.1 near the axis.

In Figure 3.5, we show how the error F (Q)− LQ(Q) decreases as the operator becomes
smoother. The operator with the smallest maximum curvature (Figure 3.5c) exhibits the
smallest error. As the operator becomes less smooth, the error increases. For the smoothest
operator the global error is at most one percent (in the range of values shown in the figure).
For the two sharper operators, there is still very high accuracy away from the highest
curvature regions. We see that error of the smooth operator, F 3,1

10 (Q), is slightly smaller
than the non smooth operator’s error near the line λ1 = λ2 (this is where the non smooth
operator is not differentiable). As the smoothing constant k → 0, the error of the linearized
homogenization decreases. For example, setting k = 0.1, as in Figure 3.5c, results in an
error on the order of 0.01. In all cases, the error is near zero in a large part of the domain. It
concentrates near the positive diagonal, where it is .1 to .4 for the non-smooth operator, and
similar for the operator with a small smoothing parameter. A larger smoothing parameter
sends the error in a similar region to the range .002 to 0.01. A small amount of smoothing
has a small effect on the error. More smoothing leads to errors going from .1 to .002 in a
similar part of the domain.
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Figure 3.5: Homogenization error for a smoothed Pucci type operator. The coefficients a(y)
are on a checker board with r = 2 (i.e. a = 1 or 2). The operators are defined in Section 3.4.
Figure 3.5a: error on a Pucci like operator. Figures 3.5b and 3.5c: error on a smoothed Pucci
like operator.
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Figure 3.6: Error for a0(y)F 3,1 on stripes, with different ratios r.

Figure 3.6 presents the error for a0(y)F 3,1(Q) on stripes. On stripes, the regions with
large error are much smaller than the operators on checkerboard. We hypothesize that this
is because stripes have a smoothing effect. The location where the large error is located
depends on the interplay between the operator and the direction of the stripes. Given that
in this example the homogenized operator is O(1), the error here is particularly large. In
a companion paper, we will derive a closer lower bound for FA,a(Q), using the optimal
invariant measure of the nonlinear operator.
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Figure 3.7: Error for M(Q, y) with r = 2, on a periodic checkerboard and on stripes.

Figure 3.7 shows error for a0(y)(Tr(Q)+MA(Q)) on both stripes and a periodic checker-
board. For the Monge Ampere type operator on checkerboard, error is on the order of 1e−2
in the first quadrant, where the curvature is bounded. Elsewhere the error is negligible.

As r (the scaling coefficient of a0(y)) grows, so does the error. As expected, for the
two Pucci type operators on checkerboard, away from the regions where the curvature is
unbounded, the error is negligible: this is where the operators are linear. Although we do
not show it, for all figures, the error profile on the random checkerboard is nearly identical
to the periodic checkerboard.

3.4.2 Numerical Results: non-separable operators

Now we consider nonseparable coefficients for FA,a(Q, y), refer to Definition 3.3.1.

For both periodic and random checkerboard coefficients, the numerically computed
values of FA,a(Q) depend only on the eigenvalues of Q, not on the eigenvectors. In
addition, FA,a(Q) is homogeneous order one. So the entire function FA,a(Q) is determined
by the 1-level set of FA,a(Q) for diagonal matrices Q.

We write
LQ(Q) = Aλ+(Q) + aλ−(Q) (3.26)

where the coefficients are obtained by numerical homogenization of the linearized operator
(3.3) whenQ had at least one positive eigenvalue. (In the negative definite case the operator
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is linear and the error was insignificant).

We found that error was within 5% for a range of values of A and a with coefficients
which vary by a factor of 10.

In Figure 3.8 we show the error on a periodic checkerboard, with

FA,a(Q, y) =

Tr(Q), y ∈ B

F 4,1, y ∈ W.

The error is on the order of 1e−1 near the line λ+ = λ− in the first quadrant; on the order
of 1e−2 in the second and fourth quadrants; and negligible otherwise. In Figure 3.8 we
plot the error against the numerically homogenized value for an the nonconvex operator
alternating between F 2,1 and F 1, 4

3 on a periodic checkerboard.

3.4.2.1 Further experiments

We let A and a each take two positive values in periodic checkerboard pattern. In the
second, we let A and a each take two positive values in a random checkerboard, drawn
randomly from a Bernoulli trial with probability p. We checked both when p = 1

2 and
other values of p. When p = 1

2 the homogenized operator on the random checkerboard is
identical to the homogenization on the periodic checkerboard. Finally, we also checked
the case when A and a are each drawn from a uniform distribution with positive support.
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In all of these cases, the numerically homogenized operator is (numerically) isotropic,
homogeneous order one, and agrees closely with F in the approximate formula (3.26).

3.5 CONCLUSIONS

We studied the error between the homogenization of the linearized operator and the fully
nonlinear homogenization. We obtained upper and lower bounds on the error in terms of
the generalized semiconvavity constants of the operator.

We also performed numerical calculations. For the class of operators we studied,
linearization was very accurate for a wide range of values of Q, with negligible error
in some cases. The numerically computed errors were small, and concentrated around
regions of high curvature in Q of the operator F (Q, x). Errors grew with the degree of
nonlinearity and with the range of the coefficients.

The numerical results are consistent with the bounds, although in some cases the error
was smaller than was predicted by the bounds.



CHAPTER 4

IMPROVED ACCURACY OF MONOTONE FINITE DIFFERENCE

SCHEMES ON POINT CLOUDS AND REGULAR GRIDS

Abstract

Finite difference schemes are the method of choice for solving nonlinear, degenerate

elliptic PDEs, because the Barles-Sougandis convergence framework [BS91] provides

sufficient conditions for convergence to the unique viscosity solution [CIL92]. For

anisotropic operators, such as the Monge-Ampere equation, wide stencil schemes are

needed [Obe06]. The accuracy of these schemes depends on both the distances to

neighbors, R, and the angular resolution, dθ. On regular grids, the accuracy is O(R2 +
dθ). On point clouds, the most accurate schemes are of O(R+ dθ), by Froese [Fro18].

In this work, we construct geometrically motivated schemes of higher accuracy in both

cases: order O(R+ dθ2) on point clouds, and O(R2 + dθ2) on regular grids.

4.1 INTRODUCTION

The goal of this paper is to build more accurate convergent discretizations for the class
of nonlinear elliptic partial differential equations [CIL92]. Our schemes are applicable in
both two and three dimensions for a class of PDEs, which include the convex envelope
operator and the Pucci operator, as well as the Monge-Ampere operator. Convergent
discretizations for these second order operators are available on regular grids [Obe08b],
but the accuracy of these schemes depends on both the distances to neighbors, R, and
the angular resolution, dθ. On regular grids, the accuracy (the discretization error of
the operator) is O(R2 + dθ). More recently, [Fro18] developed methods on point clouds
of accuracy O(R + dθ). These schemes were used for freeform optical design to shape
laser beams [FFL+17], an application which required non-regular grids. In this work,
we construct geometrically motivated schemes of higher accuracy in both cases: order
O(R + dθ2) on point clouds, and O(R2 + dθ2) on regular grids.

Even higher accuracy is possible when the operator is uniformly elliptic. For example,
in the set of papers [BCM16, FM14, Mir14a, Mir14b], Mirebeau and coauthors developed
a framework for constructing O(h2) monotone and stable schemes for several functions
of the eigenvalues of the Hessian on regular grids, in two dimensions. Related work
for discretization of convex functions is studied in [Mir16]. Mirebeau studied monotone

39
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discretization of first order (Eikonal type) equations on triangulated grids [Mir14a] as
well as second order Monge-Ampere type operators [Mir14b]. In the latter case, he
obtains nearly optimal accuracy, but his construction is most effective when the operator is
uniformly elliptic: as the operator degenerates, the width of the stencil increases. Moreover,
the elegant construction based on the Stern-Brocot tree is particular to two dimensions.

Higher accuracy is also possible using filtered schemes [FO13, OS15, BPR16] Filtered
schemes combine a base monotone scheme with a higher accuracy schemes: however
increased accuracy of the base scheme is beneficial to the filtered scheme, since it allows
for a smaller filter parameter.

The challenge of building monotone convergent finite difference schemes is illus-
trated in [CWL16] and [CW17c], where the Monge-Ampere equation is discretized in two
dimensions. In [CWL16], a mixture of a 7-point stencil for the cross derivative and a semi-
Lagrangian wide stencil was used. The 7-point stencil was used for the cross derivative
when it is monotone; otherwise the wide stencil was employed. This approach was later
employed in a coarsening strategy for multigrid in [CW17c], but does not fully solve the
problem of building narrow monotone stencils, and has not been generalized to higher
dimensions.

Another approach lies between the wide stencil finite difference approach, and the
finite element approach. In [NNZ19] a convergent method on an unstructured mesh
is constructed on two separate scales, specifically for the Monge-Ampère equation. In
this work, the authors [NNZ19] prove convergence of their method while disentangling
dependence between the spatial and directional resolution parameters. The focus of
[NNZ19] was on the asymptotic convergence of their method. In contrast, our method
aims for high accuracy given a fixed grid size, which is more consistent with computational
restrictions. Our method is similar to [NNZ19] in that we also use linear interpolation to
construct our finite difference scheme. The two scale method of [NNZ19] uses interpolation
of an n dimensional simplex, and is consistent on interior grid points away from a strip
of the boundary. Our method uses interpolation of n − 1 dimensional simplices, and is
consistent on all interior points. For a recent review of current methods, see [NSZ17].

The need for wide stencils arise from the anisotropy of the operators. For isotropic
operators, such as the Laplacian, or for operators whose second order anisotropy happens
to align with the grid (essentially combinations of uxx and uyy terms) an adaptive quadtree
grid discretization was developed in [OZ16]. An adaptive quadtree grid was combined
with the O(R + dθ) meshfree method of Froese [Fro18] and filtered schemes [OS15, FO13]
in [FS17].

The main idea of this work is based on locating the reference point within two triangles
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(in two dimensions) or simplices (in three or higher dimensions), and using barycentric
coordinates [DB08, §5.4 p.595] to write down the discretization. For first order derivates,
only one simplex is needed. It is standard to write a gradient of a function based on
linear interpolation, extending this to a directional derivative amounts to computing a dot
product. However, for second directional derivatives, it is possible to use two simplices
to compute a monotone discretization of the second directional derivative, with accuracy
which depends on the relative sizes of the simplices.

4.1.1 Off-directional discretizations

When the direction w does not align with the grid, the dθ term appears in the expression
for the finite difference accuracy. If u is discretized on a regular grid, then one common
approach is to choose the nearest grid direction vh to w, and take the finite difference along
this approximate direction, as in [Obe08b]. In the symmetric case for the second derivative,
the finite difference remains O(h2), but picks up a directional resolution error dθ. This
directional resolution error is first order, and is given as dθ = arccos〈w, vh/‖vh‖〉. Overall
this approach is O(dθ +R2) accurate, where R is the stencil radius. On a grid with spatial
resolution h, one can show that for a desired angular resolution dθ, the stencil radius R is
O( h

dθ
) (see for example [Fro18] for details). With optimal choice dθ = (2h2)

1
3 , this scheme is

therefore formally O(h 2
3 ). Although appealing due to its simplicity, this scheme suffers

some drawbacks. It is only appropriate on regular finite difference grids, and encounters
difficulties discretizing u near the boundary of the domain.

Recent work by Froese [Fro18] treats the more general case where u is discretized on
a cloud of point G. Froese presents a monotone finite difference scheme for the second
derivative which is O(R + dθ). The parameter R is a search radius, which will be defined
more precisely later. Set h = supx∈Ω minxj∈G ‖x − xj‖. Then (as in the previous method)
for a desired angular resolution, R is O

(
h
dθ

)
, and so with the optimal choice of dθ =

√
h,

the method is formally O
(√

h
)
. Unfortunately this scheme does not generalize easily to

higher dimensions.
In what follows, we present a monotone and consistent finite difference scheme for

the first and second derivatives which overcomes the deficiencies of the preceding two
methods. For the second derivative, if the grid is not regular, our scheme has accuracy
O(R + dθ2), or formally O(h 2

3 ). Further in the regular case, the scheme is O(R2 + dθ2),
and is formally O(h). The method works in dimension two and higher, and can be used
on any set of discretization points, regular or otherwise. Under mild requirements on
the spatial resolution of the domain boundary (see Lemma 4.2.2), the scheme can easily
be implemented near the boundary of a domain as well, with an appropriate choice of
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Table 4.1: Comparison of the discretizations.

Scheme Order Optimal
dθ

Formal ac-
curacy

Comments

Nearest grid direc-
tion [Obe08b]

O(R2 + dθ) O(h 2
3 ) O(h 2

3 ) Regular grids. Difficult im-
plementation near bound-
aries.

Two-scale conver-
gence [NNZ19]

O(R2 + dθ2) O(h 1
2 ) O(h) n-d, for triangulations.

Consistent away from
boundary.

Froese [Fro18] O(R + dθ) O(h 1
2 ) O(h 1

2 ) 2d, mesh free. No difficulty
at boundary.

Linear interpolant,
symmetric

O(R2 + dθ2) O(h 1
2 ) O(h) n-d, regular grids. No diffi-

culty at boundary.
Linear interpolant,
non symmetric

O(R + dθ2) O(h 1
3 ) O(h 2

3 ) n-d, mesh free. No diffi-
culty at boundary.

boundary resolution (see Remark 4.1). In particular, the scheme easily handles Neumann
boundary conditions on non rectangular domains.

Using these schemes as building blocks, we build monotone, stable and consistent
schemes for non linear degenerate elliptic equations on arbitrary meshes.

Table 4.1 presents a summary of the second derivative schemes discussed in this paper.

4.1.2 Directional discretizations

The basic building block of our discretization are first and second order directional deriva-
tives. This is in contrast to the work of Mirebeau, where two dimensional shapes built up
of triangles are chosen to match the ellipticity of the operator.

Write the first and second directional derivatives of a function u in the direction w (with
||w|| = 1) as

uw = 〈w,Du〉, uww = wTD2uw.

where Du and D2u are the gradient and Hessian of u, respectively.

Define the forward difference in the direction v by

Dvu(x) = u(x+ v)− u(x)
|v|

The first order monotone finite difference schemes for uw in the directions tw and −tw are
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given by

Dtwu(x) = uw(x) +O(t) (4.1)

D−twu(x) = uw(x) +O(t)

The simplest finite difference scheme for uww is the centred finite differences

u(x+ tw)− 2u(x) + u(x− tw)
t2

= 1
t

[Dtwu(x) +D−twu(x)] (4.2)

= uww(x) +O(t2) (4.3)

The generalization to unequally spaced points is clear from (4.2)

2
tp + tm

[
Dtpwu(x) +D−tmwu(x)

]
= uww(x) +O(t+). (4.4)

where t+ = max{tp, tm} (in general, the scheme is first order accurate, unless tp = tm).

4.1.3 Directional finite differences using barycentric coordinates

Suppose we want to compute uw(x0) using values u(xi) which determine a simplex. Using
linear interpolation, we can approximate the value of u(x+ tpw) on the boundary of the
simplex. A convenient expression for this value is given by using barycentric coordinates,
(see, for example, [DB08, §5.4 p.595]), which allows us to generalize (4.2).

Suppose Sm and Sp are the vertices of an (n− 1)-dimensional simplex. Suppose further
that

r ≤ ‖x0 − xi‖ ≤ R, for all xi ∈ {Sm,Sp}

Suppose further that

xp = x0 + tpw is in the simplex determined by Sp
xm = x0 − tmw is in the simplex determined by Sn

for tm, tp ∈ [r, R]. Construct the corresponding linear interpolants Lm and Lp

Lp(x) =
∑
i∈Sp

λip(x)u(xi) (4.5)

Lm(x) =
∑
i∈Sm

λim(x)u(xi). (4.6)

Here λp(x) and λm(x) are the barycentric coordinates in Sp and Sm respectively. The
barycentric coordinates are easily constructed. Let vpi = xi−x0, i ∈ Sp, and similarly define
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vmi . By assumption all vi’s satisfy r ≤ ||vi|| ≤ R. Let Vp be the matrix

Vp =
[
vp1 vp2 . . . vpn

]
. (4.7)

Then λp is given by solving
Vpλp = x. (4.8)

The barycentric coordinates λm for Sm are defined analogously. By virtue of convexity, if x
lies in the (relative) interior of a simplex, its barycentric coordinates are positive and sum
to one.

Barycentric coordinates allow us to define the finite difference schemes for the first and
second directional derivatives as follows.

Definition 4.1.1 (First derivative schemes). The first derivative scheme takes two forms, respec-
tively upwind and downwind:

Dwu(x0) := 1
tp

(Lp(x0 + tpw)− u(x0)) , tp = 1
1TV −1

p w
(4.9)

D−wu(x0) := 1
tm

(Lp(x0 − tmw)− u(x0)) , tm = −1
1TV −1

m w
(4.10)

Definition 4.1.2 (Second derivative scheme). The second derivative scheme is defined as

Dwwu(x0) = 2 (Dwu(x0) +D−wu(x0))
tp + tm

. (4.11)

with tp and tm given above.

Lemma 4.1.3 (Monotone and stable). The finite difference schemes of Definitions 4.1.1 and 4.1.2
are monotone and stable.

Proof. By convexity, we are guaranteed that 0 ≤ λip,m ≤ 1. Further, we have that both∑
λip = ∑

λim = 1. This corresponds to a monotone discretization of the operator [Obe06].

In the application below, we will use long, slender simplices, which are oriented near
the directions ±w, and control the interior and exterior radii, in order to establish the
accuracy of the schemes.



Chapter 4. Monotone finite difference schemes on point clouds 45

4.2 THE FRAMEWORK

In this section we introduce a framework for constructing monotone finite difference
operators on a point cloud, in dimensions two or three. To implement the method, we
require finding triangles (in two dimensions) or tetrahedra (in three dimensions) which
contain the reference point. The neighbours of the reference point form (n−1)-dimensional
simplices. In practice, these simplices are found using an underlying triangulation, which
could be provided by a mesh generator. (See Algorithm 1 in §4.2.3 for details.) The
configuration of these simplices determines the accuracy of the scheme.

4.2.1 Notation

We use the following notation.

• Ω ⊂ Rn, an open convex bounded domain with Lipshitz boundary ∂Ω. We focus on
the cases n = 2 and n = 3.

• G ⊂ Ω̄ is a point cloud with points xi, i = 1 . . . N .

• If G is given as the undirected graph of a triangulation, then A is the corresponding
adjacency matrix of the graph.

• h = supx∈Ω miny∈G ‖x− y‖, the spatial resolution of the graph. Every ball of radius h
in Ω̄ contains at least one grid point.

• hB = supx∈∂Ω miny∈G∩∂Ω ‖x−y‖ is the spatial resolution of the graph on the boundary.

• δ = minx∈G∩Ω miny∈G∩∂Ω ‖x− y‖ is minimum distance between an interior point and
a boundary point.

• ` is the minmum length of all edges in the graph G.

• dθ is the desired angular resolution. We shall require at least dθ < π.

• R = Cnh
(
1 + cosec(dθ2 )

)
is the maximal search radius, and depends only on the

angular resolution, the spatial resolution, and a constant Cn determined by the
dimension.

• r = Cnh
(
−1 + cosec(dθ2 )

)
is the minimal search radius. We will see that the minimal

search radius is necessary to guarantee convergence of the schemes. Further, to
guarantee the convergence of schemes near the boundary, it will be necessary to
require δ ≥ r.
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Figure 4.1: There exists an n − 1 simplex S enclosing w, contained within ball of radius
Cnh. In Fig 4.1b, projections onto a plane perpendicular to w are shown.

• Cn is a constant determined by the dimension. In R2, C2 = 2; in R3, C3 = 1 + 2√
3 .

The construction of the schemes above require the existence of simplices which intersect
the vector w. For accuracy, we further require that angular resolution of the simplices
diameter relative to the point x0 is less than dθ. The following three lemmas show that for
given angular and spatial resolutions, such schemes exist. Refer to Figure 4.1.

Lemma 4.2.1 (Existence of scheme away from boundary). Take x0 ∈ G with dist(x0, ∂Ω) ≥ R.
Then it is possible to construct the simplices used in Definition 4.1.1.

Proof. We must show that Sp and Sm exist. We first show the existence of the simplex Sp;
Sm follows similarly. Define the cone

K :=
{
x | 〈v, w〉
‖v‖

≥ 1− cos(dθ2 ), v = x− x0

}
. (4.12)

Any two points in K have angular resolution (relative to x0) less than dθ. Therefore
choosing points in this cone ensures the angular resolution is satisfied.

We must now show that the set G ∩K contains points defining Sp. By construction, any
ball in the interior of Ω with radius h contains at least one interior point. Therefore, we
may construct a simplex intersecting the line x0 + tw, t ∈ R, by placing n kissing balls on a
plane w⊥ perpendicular to w, and choosing a point from within each ball. Using simple
geometrical arguments (cf Apollonius’ problem), it can be shown that these n balls of
radius h are all contained within a larger ball of radius Cnh (with C2 = 2 and C3 = 1 + 2√

3 ).
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Figure 4.2: Construction of simplices for the finite difference scheme on: (4.2a) an interior
point sufficiently far from the boundary; and (4.2b) a point near the boundary.

Refer to Figure 4.1. Thus, a candidate simplex is guaranteed to exist within every ball of
radius Cnh with center on the line x0 + tw.

Let this larger ball be B̄(x0 + (R− Cnh)w,Cnh). See Figure 4.2a. Simple trigonometric
arguments show that this ball is contained within the cone K. Therefore the cone K
contains the desired simplex Sp.

Similar reasoning gives the existence of Sm. Taken together, this allows for the construc-
tion of the schemes.
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Lemma 4.2.2 (Existence of interior scheme near boundary). Take x0 ∈ G∩Ω with dist(x0, ∂Ω) <
R. If the spatial resolution of G on the boundary is such that CnhB ≤ δ tan(dθ2 ) and the angular
resolution is small enough (dependent on the regularity of the boundary) then the schemes given by
Definition 4.1.1 exists.

Proof. We first will show Sp exists; the existence of Sm follows analogously. With the cone
K defined as in the previous lemma, we must show that G ∩K contains points defining Sp.

Suppose first that B̄(x0, R) ∩ K ⊂ Ω. Then the existence of Sp follows from Lemma
4.2.1.

Suppose instead that B̄(x0, R) ∩ K is not entirely contained within Ω. If dθ is small
enough, then a portion of the boundary is contained within B̄(x0, R) ∩K,

‖x0 − y‖ < R if y ∈ ∂Ω ∩K. (4.13)

By construction, dist(x0, ∂Ω) ≥ δ. Therefore the diameter of this portion of the boundary
is at least δ tan(dθ2 ) ≥ Cnh. Using similar geometrical reasoning as in the previous lemma
(see Figure 4.2b), there must be n points on the boundary defining the simplex Sp.

The previous two lemmas guarantee the first and second derivative schemes exist on
the interior of the domain. The existence of the first derivative scheme on the boundary
is, in general, not a simple exercise: existence depends on the regularity of the domain,
the angle formed by w and the boundary normal n, h, hB, and δ. For our purposes, we
guarantee the existence of a scheme for the normal derivative with the following lemma.

Lemma 4.2.3 (Existence of normal derivative scheme on the boundary). Define the set
Ωδ := {x ∈ Ω | dist(x, ∂Ω) ≥ δ}. Suppose Ωδ is such that for every x ∈ Ωδ, x ∈ B̄(y, Cnh) ⊂ Ωδ

for some y ∈ Ωδ. Suppose further that the minimum distance δ between interior points and
boundary points is less than the minimum search radius r. Then the scheme Dnu(x0) for the
inward pointing normal derivative exists for all boundary points.

Proof. Let x0 be a boundary point. If δ < r then the search ball B̄(x0 + (R − Cnh)n,Cnh)
is contained entirely within Ω. Thus, by the same arguments as in the proof of Lemma
4.2.1, the simplex Sp exists and has angular resolution less than dθ. This allows for the
construction of (4.9) for the normal derivative.

Combining these three lemmas guarantees existence of the schemes.

Theorem 4.2.4 (Existence of schemes). Suppose G is a point cloud in Ω with boundary resolu-
tion CnhB ≤ δ tan(dθ2 ). With small enough dθ, the first and second derivative schemes defined
respectively by Definitions 4.1.1 and 4.1.2 exist for all interior points x0 ∈ G ∩ Ω. If in addition
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every x ∈ Ωδ lies within a ball B̄Cnh ⊂ Ωδ and δ < r, the scheme Dnu(x0) for the inward normal
derivative exists for all boundary points x0 ∈ G ∩ ∂Ω.

Remark 4.1 (Boundary resolution). It is reasonable to expect that the minimum distance
between interior points and the boundary is roughly equal to the spatial resolution, δ ≈ h.
Since tan is nearly linear when dθ is small, Theorem 4.2.4 with optimal choice dθ ≈ hα

gives that hB = O(h1+α). The constant α is 1
2 for regular grids and 1

3 for point clouds, see
Table 4.1.

4.2.2 Consistency & Accuracy

We now derive bounds on the error of the schemes, and show that the schemes are
consistent with an appropriate choice of dθ in terms of h. First, recall the fact that the first
term for the error of a linear interpolant is given by

u(x)− L(x) ≈ 1
2
∑

λj(x)(x− xj)TD2u(xj)(x− xj). (4.14)

Therefore the interpolation error at x0 + tpw is

E[Lp] :=u(x0 + tpw)− Lp(x0 + tpw) (4.15)

≈1
2
∑
i∈Sp

λip (vpi − tpw)T D2u(xi) (vpi − tpw) (4.16)

≤1
2 ||D

2u||∞
∑
i∈Sp

λip||v
p
i − tpw||2. (4.17)

The interpolation error at x0 − tmw is bounded above in a similar fashion.

Lemma 4.2.5 (Consistency of first derivative scheme). The first derivative schemes of Definition
4.1.1 are consistent with a formal discretization error of O(h).

Proof. The angular resolution error of the upwind first derivative scheme is

E[Dwu, dθ] = E[Lp]
tp

(4.18)

≤ 1
2‖D

2u‖∞
∑
i∈Sp

λpi
‖vpi − tpw‖2

tp
(4.19)

≤ 1
2‖D

2u‖∞
maxi,j∈Sp ‖v

p
i − v

p
j‖2

mink∈Sp ‖vk‖
. (4.20)

By construction, the maximum distance between any two points in a simplex of the scheme
is 2Cnh, and so the numerator here is bounded above by (2Cnh)2. Further, the minimum
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distance of a vector in the scheme is bounded below by the minimum search radius r. That
is

min
k∈Sp,Sm

‖vk‖ ≥ r = Cnh

(
−1 + cosec(dθ2 )

)
(4.21)

= O
(
h

dθ

)
. (4.22)

With this in mind, (4.20) is bounded by

E[Dwu, dθ] ≤
1
2‖D

2u‖∞
(2Cnh)2

r
(4.23)

= O(hdθ) (4.24)

Fixing dθ constant as h→ 0 gives that the scheme is O(h).

Lemma 4.2.6 (Consistency of second derivative schemes). Using a non symmetric stencil,

with the optimal choice dθ =
(
h
2

) 1
3 , the second derivative scheme Dwwu of Definition 4.1.2 is

consistent, with a formal accuracy of O(h 2
3 ). Moreover on a symmetric stencil, with the optimal

choice dθ = h
1
2 , Dwwu is consistent, with a formal accuracy of O(h).

Proof. The angular resolution error of the second derivative scheme is

E[Dwwu, dθ] = 2
(

E[Lp]
t2p + tptm

+ E[Lm]
t2m + tptm

)
(4.25)

≤ 1
t2−

(
E[Lp] + E[Lm]

)
(4.26)

where t− = min{tp, tm}. Arguing in a similar fashion as in the first derivative,

E[Dwwu, dθ] ≤ ||D2u||∞
maxS∈Sp,Sm maxi,j∈S ||vi − vj||2

mink∈Sp,Sm ||vk||2
(4.27)

≤ ||D2u||∞
(2Cnh)2

r2 (4.28)

= O(dθ2). (4.29)

since dθ = O(h
r
) when dθ is small.

The total error of the scheme is the sum of angular and spatial resolution errors (the
spatial error arises from the finite difference series approximation; the angular error from
the linear interpolation). For the second derivative, in the non symmetric case, the error of
the scheme is

E[uww] = O(R + dθ2) (4.30)
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= O( h
dθ

+ dθ2), (4.31)

because R = O( h
dθ

) when dθ is small. In the symmetric case the error is

E[Dwwu] = O(R2 + dθ2) (4.32)

= O
( h

dθ

)2

+ dθ2

 (4.33)

To ensure the scheme is consistent, dθ must be chosen in terms of h such that the error of
the scheme goes to zero as the point cloud is refined. In the non symmetric case, the best

choice is dθ =
(
h
2

) 1
3 , which gives a formal accuracy of O(h 2

3 ). When the discretization is
symmetric, the best choice of dθ is

√
h, and the scheme is formally O(h).

Remark 4.2. To guarantee the accuracy of the first order scheme, dθ must remain constant
as h→ 0. In contrast, for the second order scheme to converge as h→ 0, it must be that

dθ ∼
(
h
2

) 1
3 (when the grid is not regular). Thus, for the remainder of the paper, when we

speak of the angular resolution error, we mean the angular resolution error for the second
derivative scheme. We assume that the angular resolution error for the first derivative
scheme has been fixed to some reasonable constant, say π

4 .

Remark 4.3. To ensure the existence of consistent schemes near the boundary, we require
that the minimal distance between interior and boundary points is greater than the minimal
search radius, δ ≥ r.

4.2.3 Practical considerations

We now outline a procedure for preprocessing the point cloud G, which will greatly speed
the construction of elliptic schemes. The algorithm takes a point cloud xi ∈ G, i ∈ I and
returns a set Li of candidate simplices for each point. Each simplex Sk ∈ Li, k = 1, . . . ,mi,
is contained within the annulus formed by the minimum and maximum search radii.
Further, projecting Li onto the sphere forms a covering of the sphere. Thus all possible
directions are available.

The pseudocode of the algorithm is given in Algorithm 1. Note that we assume the
set of normalized neighbour points, denoted by V , is unique. If not, for each set of non
unique points, keep only the smallest direction satisfying the minimum search radius.
This procedure is necessary for example on regular grids. We further assume that the
triangulation is well-shaped, in the following sense. For any two vertices xi and xj with
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‖xi − xj‖ < R in the triangulation, we assume that the graph distance between xi and xj is
bounded above by p(R)1.

Now suppose the list of simplices

Li = {Sk} , k = 1, . . . ,mi

has been generated for a point xi. Given a direction w it is straightforward to choose Sp
and Sm from Li. Define

Vk =
[
v1 v2 . . . vn

]
, with vk = xj − xi, j ∈ Sk.

Then by Farkas’ lemma,
Sp =

{
Sk ∈ Li | V −1

k w ≥ 0
}

and
Sm =

{
Sk ∈ Li | V −1

k w ≤ 0
}
.

If these sets are not singletons (when w aligns with a grid direction), then choose one
representative element.

Remark 4.4. The proofs of Section 4.2 relied on choosing the maximal and minimal search
radii to respectively be R, r = Cnh(±1 + cosec(dθ2 )). This choice makes the proofs relatively
straightforward. However, it is possible to still guarantee existence and accuracy of the
finite difference scheme with the narrower band of search radii R, r = h(±1 +Cn cosec(dθ2 )).
In practice this set of search radii limits the appearance of ‘spikey’ stencils. We have found
that it is best to choose a set of simplices whose boundary has minimal surface area, thus
limiting the amount of interpolation error.

4.3 APPLICATION : E IGENVALUES OF THE HESSIAN

It is relatively straightforward to employ Dwwu to find maximal and minimal eigenvalues
of the Hessian about a point xi ∈ G. We will illustrate the procedure for the maximal
eigenvalue, but the procedure is analogous for the minimal eigenvalue.

Define the finite difference operator Λh,dθ
+ u(xi) := sup‖w‖=1Dwwu(xi) as the approxima-

tion of the maximum eigenvalue of the Hessian.

Actually computing Λh,dθ
+ u(xi) reduces to an optimization problem. Define K(S) as the

cone generated by a set S. We say that two cones overlap if their intersection is non empty.
For each pair {Sp,Sm} of overlapping antipodal simplices inLi (withK(Sp)∩K(−Sm) 6= ∅),

1For example for a Delaunay triangulation in two dimensions, p(R) = 4πR
3

√
3 [KG92].
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Algorithm 1 Algorithm for preprocessing the point cloud
Input :A point cloud xi ∈ G in Rn, i ∈ I, and resolution error dθ
Output :A list of sets of simplices Li, i ∈ I, where Li = {S1, . . . ,Smi

}
1 T ← triangulation(G) ; // triangulation of G
2 A← adj(T ) ; // Adjacency matrix of T
3 h← supx∈Ω miny∈G ‖x− y‖ ; // spatial resolution of point cloud
4 R← Cnh

(
1 + cosec

(
dθ
2

))
; // maximum search radius

5 r ← Cnh
(
−1 + cosec

(
dθ
2

))
; // minimum search radius

6 p← dp(R)e ; // maximum neighbour graph distance
7 P ← ∑p

k=1A
k

8 foreach i ∈ I do
9 N ← {j | Pij 6= 0, i 6= j, r ≤ ‖xi − xj‖ ≤ R} ; // Neighbour indices

10 V ←
{

xi−xj

‖xi−xj‖ | j ∈ N
}

; // assume elements of V are unique
11 C ← Convex hull of V Li ← ∅ foreach Facet F of C do

// F is a set of indices of the points in V
12 S ← {xk | k = Nj, j ∈ F}
13 Li = Li ∪ {S}
14 end
15 end
16 return {Li} , i ∈ I

one computes

P [Sm,Sp] =maximize
λp,λm

2
[∑

i∈Sp
λipu(xi)− u(x0)
t2p + tptm

+
∑
i∈Sm

λimu(xi)− u(x0)
t2m + tptm

]

subject to 0 ≤ λp, λm ≤ 1

1Tλp = 1

1Tλm = 1

tp = ||Vpλp||

tm = ||Vmλm||

The variables tp and tm are dummy variables. On a two dimensional regular grid, this
simplifies to an optimization problem over one variable, which can be solved analytically.
(We note that in practice, we use an approximate method and do not solve this optimization
problem directly. See the Remark 4.5.)

To find the maximal eigenvalue, one takes the maximal value computed over all
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antipodal pairs:

Λh,dθ
+ u(xi) = max

Sm,Sp∈Li

K(Sm)∩K(−Sp)6=∅

P [Sm,Sp] (4.34)

The error of the scheme is

E[Λh,dθ
+ ] =

∣∣∣∣∣max
‖v‖=1

vTD2u(xi)v − max
‖w‖=1

Dwwu(xi)
∣∣∣∣∣ (4.35)

≤ max
‖w‖=1

wTD2u(xi)w −Dwwu(xi) (4.36)

= O(R + dθ2), (4.37)

on point clouds. As before, on a regular grid the error is O(R2 + dθ2).

Remark 4.5. In cases other than on a regular grid in two dimensions, the optimization
problem (4.34) is difficult to implement. In practice, as a compromise we instead compute
finitely many directional derivative Dwiwi

u, i = 1, . . . , k. Define the effective angular
resolution through

cos dθe = max
i

min
j 6=i
〈wi, wj〉. (4.38)

Because the directional derivative may be taken off grid, one may choose sufficiently many
directions {wi} such that dθe ≤ dθ2. With this choice of directional derivatives, the maximal
eigenvalue of the Hessian can be defined as

Λh,dθe
+ u(xi) = max

i
Dwiwi

u(xi). (4.39)

A simple computation shows that Λh,dθe
+ also has accuracy O(R + dθ2).

4.4 SOLVERS

Before continuing with specific numerical examples, we first detail the numerical solver
used. All solutions in Section 4.5 were computed with a global semi-smooth Newton
method. Without modification, the Newton method fails, because the Newton method is
guaranteed to be only a local method. However, the Newton method achieves supralinear
rates of convergence when the starting condition is close enough to the true solution.

Thus to guarantee convergence, we use a global semi-smooth Newton method [FP07,
Chapter 8]. Let F h[u] be a finite difference approximation of an elliptic operator F [u].
After each Newton step, we check for a sufficient decrease in the energy ‖F h[u]‖2. If the
Newton step does not decrease, the method switches to performing Euler steps, which
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is a guaranteed descent direction. We perform Euler steps for the same amount of CPU
time as one Newton step, which was first proposed in [Car17]. Because the Euler step is a
guaranteed descent direction, the method is globally convergent [FP07].

4.5 NUMERICAL EXAMPLES

Here we test our meshfree finite difference method on two examples2. We demonstrate
the convergence rates of the method, and compare our method with that of [Fro18]. For
each method error is reported as the difference between the computed solution and the
known analytic solution, measured in the maximum norm (which is the appropriate norm
for measuring convergence to the viscosity solution [Obe06]).

4.5.1 Convex envelope

Our first example is the convex envelope of a function g(x) on a convex domain Ω. The
convex envelope has been well studied. In [Obe07] it was shown that the convex envelope
solves the partial differential equationmax{u(x)− g(x),−Λ−u(x)} = 0 x ∈ Ω

u(x) = g(x) x ∈ ∂Ω,
(4.40)

where Λ−u(x) is the minimal eigenvalue of the Hessian. A stable, monotone convergent
finite difference scheme for computing the convex envelope was presented in [Obe08a].

In what follows, we take g(x) to be the Euclidian distance to two points p1 and p2,

g(x) = min
i=1,2
{‖x− pi‖}, (4.41)

or in otherwords, a double cone.

We start by computing the solution on the square [−1, 1]2, with p1,2 = (±3
7 , 0). We

discretize Λ−u(x) using our symmetric linear interpolation finite difference scheme for
eigenvalues of the Hessian, presented in Section 4.3, and using the wide stencil method
developed in [Obe08a]. We call the latter a nearest neighbour scheme. For both methods,
we solved the equation using stencils with radius two and three. Figure 4.3b and Table
4.2 present convergence rates in the max norm. We can see that for stencil radius two,
angular resolution error arises quickly as h is decreased, and the error plateaus. However,
with stencil radius three, we get a better handle on the convergence rate of the error.

2Our code, written in Python, is publicly available at https://github.com/cfinlay/pyellipticfd

https://github.com/cfinlay/pyellipticfd
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The standard wide stencil method achieves roughly O(h 2
3 ), while the symmetric linear

interpolation method achieves O(h), as expected.

Although the convergence rate of the linear interpolation method is better than the
nearest neighbour method, for the values of h we studied, the linear interpolation method
has higher absolute error. This is because in order to guarantee convergence, the linear
interpolation method must choose points greater than the minimum search radius, whereas
the standard wide stencil finite difference scheme may choose its nearest neighbours. Thus
the spatial resolution error of the linear interpolation scheme is generally higher than the
nearest neighbour scheme.

We are also interested in the error of the schemes as a function of the angular resolution.
To this end, for fixed h, we compare the error of the schemes when the grid has been
rotated off axis. Our results are presented in Figure 4.4. The mean of the error of the linear
interpolation scheme is higher than the nearest neighbour scheme, due to the fact that the
linear interpolation scheme chooses points further from the stencil centre. However, the
variance of the error for the linear interpolation scheme nearest neighbour scheme is much
less than that of the nearest neighbour scheme. That is, the linear interpolation scheme
depends less on the angular resolution of the stencil relative to the rotation of the grid.

Finally, we compare the linear interpolation scheme with Froese’s scheme on the unit
disc, using an irregular triangulation of points. We generate the interior points using the
triangulation software DistMesh [PS04], and augment the boundary with additional points
to ensure a sufficient boundary resolution. Convergence rates are presented in Figure 4.3a
and Table 4.2. We can see that the linear interpolation scheme achieves both the best rate
of convergence and a better absolute error.

4.5.2 Pucci equation

Our next example is the Pucci equation,αΛ+u(x) + Λ−u(x) = 0 x ∈ Ω

u(x) = g(x) x ∈ ∂Ω
(4.42)

where α is a positive scalar, and Λ−u and Λ+u are respectively the minimal and maximal
eigenvalues of the Hessian. A convergent, monotone and stable finite difference scheme
for the Pucci equation was first developed in [Obe08b]. Following [DG05, Obe08b] we
take

u(x, y) = −ρ1−α, ρ(x, y) =
√

(x+ 2)2 + (y + 2)2. (4.43)
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Table 4.2: Errors and convergence order for the convex envelope.

Triangular mesh, interpolation
h N Error rate

8.6e−2 427 0.16 –
5.9e−2 785 0.13 0.61
4.0e−2 1452 0.11 0.41
2.9e−2 2713 0.09 0.58
2.0e−2 5101 0.07 0.59
1.4e−2 9674 0.05 1.07

Regular grid, interpolation, r = 2
h N Error rate

5.9e−2 392 7.5e−2 –
4.1e−2 721 6.5e−2 0.43
3.0e−2 1288 5.5e−2 0.51
2.1e−2 2492 4.7e−2 0.43
1.5e−2 4616 4.3e−2 0.26
1.0e−2 9017 4.2e−2 0.09

Regular grid, interpolation, r = 3
h N Error rate

5.9e−2 528 9.0e−2 –
4.2e−2 913 8.4e−2 0.20
3.0e−2 1552 5.6e−2 1.24
2.1e−2 2868 3.4e−2 1.45
1.5e−2 5136 2.9e−2 0.52
1.0e−2 9757 2.2e−2 0.68

Triangular mesh, [Fro18]
h N Error rate

8.6e−2 427 0.17 –
5.0e−2 810 0.16 0.18
4.1e−2 1533 0.12 0.80
3.0e−2 2908 0.11 0.30
2.0e−2 5526 0.09 0.37
1.4e−2 10542 0.08 0.47

Regular grid, Nearest neighbour, r = 2
h N Error rate

5.9e−2 392 5.4e−2 –
4.2e−2 721 4.2e−2 0.73
3.0e−2 1288 4.0e−2 0.15
2.1e−2 2492 4.2e−2 -0.13
1.5e−2 4616 3.9e−2 0.24
1.0e−2 9017 4.0e−2 -0.07

Regular grid, Nearest neighbour, r = 3
h N Error rate

5.9e−2 528 5.4e−2 –
4.2e−2 913 2.7e−2 2.0
3.0e−2 1552 3.0e−2 -0.29
2.1e−2 2868 2.5e−2 0.47
1.5e−2 5136 1.9e−2 0.98
1.0e−2 9757 1.7e−2 0.18
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We compute solutions on the unit disc and the square [−1, 1]2.
We discretized the square using a regular grid, and use either the nearest neighbour

scheme, or the symmetric finite difference interpolation scheme presented in Section
4.3. We use stencils of radius two or three. Errors and rates of convergence on the grid
are presented in Table 4.3 and in Figure 4.5b. Both methods achieve roughly the same
convergence rate before angular resolution error dominates. The nearest neighbour scheme
achieves a slightly better error rate.

As in the convex envelope example, we used DistMesh to triangulate the unit disc. Error
and convergence rates are shown Table 4.3 and Figure 4.5a. Both methods achieve nearly
O(h) convergence rate, which is better than predicted by our analysis. We hypothesize
this is due to the fact that this example is smooth on the domain studied.

4.5.2.1 Solver comparison

Finally, we performed a comparison of the three solvers (semi-smooth Newton, Euler, and
a combination of the two) in terms of CPU time, for the Pucci equation on a regular grid.
Results are presented in Table 4.4.

As a function of number of grid points, the CPU time of Euler’s method is roughly
O(N2) for both methods, interpolation and nearest neighbour. For the interpolation
finite different schemes, both semi-smooth Newton and the combination solver is nearly
O(N): we calculated a log-log line of best fit, and found semi-smooth Newton and the
combination solver to be about O(N1.2).

Of all solvers and finite difference methods, the nearest neighbour finite difference
scheme with the combination solver achieves the best CPU time, followed by the semi-
smooth Newton. However, as a function of number of grid points, the CPU time is roughly
O(N1.75). This rate is worse than the interpolation finite different scheme, and so we expect
on even larger grids, eventually the interpolation finite difference method would be faster
with either semi-smooth Newton or the combination solver.
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Table 4.3: Errors and convergence order for the Pucci equation.

Triangular mesh, interpolation
h N Error rate

8.6e−2 427 1.3e−3 –
5.0e−2 785 8.3e−4 1.16
4.1e−2 1452 5.0e−4 1.34
3.0e−2 2713 3.5e−4 1.09
2.0e−2 5101 2.5e−4 0.88
1.4e−2 9674 1.6e−4 1.29

Regular grid, interpolation, r = 2
h N Error rate

5.9e−2 392 9.4e−4 –
4.1e−2 721 7.0e−4 0.88
3.0e−2 1288 5.8e−4 0.58
2.1e−2 2492 5.1e−4 0.35
1.5e−2 4616 4.8e−4 0.19
1.0e−2 9017 4.6e−4 0.11

Regular grid, interpolation, r = 3
h N Error rate

5.9e−2 528 1.0e−3 –
4.1e−2 913 8.4e−4 2.20
3.0e−2 1552 4.2e−4 2.14
2.1e−2 2868 3.1e−4 0.86
1.5e−2 5136 2.6e−4 0.53
1.0e−2 9757 2.3e−4 0.30

Triangular mesh, [Fro18]
h N Error rate

8.6e−2 427 1.5e−3 –
5.0e−2 810 2.1e−3 -0.90
4.1e−2 1533 1.2e−3 1.60
3.0e−2 2908 9.9e−4 0.58
2.0e−2 5526 5.3e−4 1.57
1.4e−2 10542 4.0e−4 0.841

Regular grid, Nearest neighbour, r = 2
h N Error rate

5.9e−2 392 4.8e−4 –
4.1e−2 721 3.6e−4 0.83
3.0e−2 1288 3.0e−4 0.52
2.1e−2 2492 2.8e−4 0.28
1.5e−2 4616 2.6e−4 0.16
1.0e−2 9017 2.6e−4 0.07

Regular grid, Nearest neighbour, r = 3
h N Error rate

5.9e−2 528 7.0e−4 –
4.1e−2 913 3.8e−4 1.80
3.0e−2 1552 2.4e−4 1.45
2.1e−2 2868 1.6e−4 1.08
1.5e−2 5136 1.3e−4 0.62
1.0e−2 9757 1.0e−4 0.68
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Table 4.4: Comparison of wall clock time of solvers for the Pucci equation (4.42) in two
dimensions on a regular grid. Time is reported in seconds. Results are for stencils of either
radius r = 2 or r = 3.

Interpolation, r = 2
N 392 721 1288 2492 4616 9017

Euler 1.16 3.22 9.43 34.39 125.49 500.98
Newton 0.74 1.29 2.70 5.86 12.32 28.86
Combination 0.75 1.36 2.50 6.07 12.39 28.35

Nearest neighbour, r = 2
N 392 721 1288 2492 4616 9017

Euler 0.43 1.62 5.75 24.23 90.90 383.43
Newton 0.06 0.11 0.25 1.04 3.40 13.51
Combination 0.05 0.10 0.23 0.73 2.66 9.54

Interpolation, r = 3
N 528 913 1552 2868 5136 9757

Euler 1.54 3.11 7.73 26.17 86.05 317.98
Newton 1.47 2.59 4.66 9.54 19.29 45.68
Combination 1.39 2.56 5.70 11.97 23.12 53.77

Nearest neighbour, r = 3
N 528 913 1552 2868 5136 9757

Euler 0.84 3.28 11.93 50.90 195.14 823.99
Newton 0.08 0.16 0.37 1.35 4.63 17.66
Combination 0.07 0.14 0.36 0.95 3.07 10.61
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Figure 4.3: Figure 4.3a: Convergence plot for the convex envelope on the unit disc with
triangular mesh. Figure 4.3b: Convergence plot for the convex envelope on a regular grid
over the square [−1, 1]2.
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Figure 4.6: CPU time taken to compute solution of the Pucci equation on a regular grid,
with stencil width r = 3, for both methods.



CHAPTER 5

SCALEABLE INPUT GRADIENT REGULARIZATION FOR

ADVERSARIAL ROBUSTNESS

Abstract

Input gradient regularization is not thought to be an effective means for promot-

ing adversarial robustness. In this work we revisit this regularization scheme with

some new ingredients. First, we derive new per-image theoretical robustness bounds

based on local gradient information, and curvature information when available. These

bounds strongly motivate input gradient regularization. Second, we implement a

scaleable version of input gradient regularization which avoids double backpropaga-

tion: adversarially robust ImageNet models are trained in 33 hours on four consumer

grade GPUs. Finally, we show experimentally that input gradient regularization is

competitive with adversarial training.

5.1 INTRODUCTION

Neural networks are vulnerable to adversarial attacks. These are small (imperceptible to the
human eye) perturbations of an image which cause a network to misclassify the image
[BCM+13, SZS+13, GSS14]. The threat posed by adversarial attacks must be addressed
before these methods can be deployed in error-sensitive and security-based applications
[Pot17].

Building adversarially robust models is an optimization problem with two objectives: (i)
maintain test accuracy on clean unperturbed images, and (ii) be robust to large adversarial
perturbations. The present state-of-the-art method for adversarial defence, adversarial
training [SZS+13, GSS14, TKP+18, MMS+17, MMIK18], in which models are trained on
perturbed images, offers robustness at the expense of test accuracy [TSE+18]. It is not
clear that multi-step adversarial training is scaleable to large datasets such as ImageNet-1k
[DDS+09]. Previous attempts [KKG18, XWvdM+18] used hundreds of GPUs and took
nearly a week to train, although recent work by Shafahi et al. [SNG+19] has offered a
remedy.

Assessing the empirical effectiveness of an adversarial defence requires careful testing
with multiple attacks [GMP18]. Furthermore, existing defences are vulnerable to new,
stronger attacks: two recent works [CW17a, ACW18] have advocated designing specialized

65
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attacks to circumvent prior defences, while Uesato et al. [UOKvdO18] warn against using
weak attacks to evaluate robustness. This has led the community to develop theoretical tools
to certify adversarial robustness. Several certification approaches have been proposed:
through linear programming [WK18, WSMK18] or mixed-integer linear-programming
[XTSM18]; semi-definite relaxation [RSL18b, RSL18a]; randomized smoothing [LCWC18,
CRK19]; or estimates of the local Lipschitz constant [HA17, WZC+18, TSS18]. The latter
two approaches have scaled well to ImageNet-1k.

In practice, certifiably robust networks often perform worse than adversarially trained
models, which lack theoretical guarantees. In this article, we work towards bridging the
gap between theoretically robust networks and empirically effective training methods.
Our approach relies on minimizing a loss regularized against large input gradients

E
(x,y)∼P

[
L(f(x;w), y) + λ

2‖∇xL(f(x;w), y)‖2
∗

]
(5.1)

where ‖ · ‖∗ is dual to the one measuring adversarial attacks (for example the `1 norm for
attacks measured in the `∞ norm). Heuristically, making loss gradients small should make
gradient based attacks more challenging.

Drucker and LeCun [DL91] implemented gradient regularization using ‘double back-
propagation’, which has been shown to improve model generalization [NBA+18]. It has
been used to improve the stability of GANs [RLNH17, NK17] and to promote learning
robust features with contractive auto-encoders [RVM+11]. While it has been proposed
for adversarial attacks robustness [RD18, RLNH18, HA17, JG18, SOS+18], experimental
evidence has been mixed, in particular, input gradient regularization has so far not been
competitive with multi-step adversarial training.

On non-smooth networks (such as those built of ReLUs) small gradients are no guaran-
tee of adversarial robustness [PMG+17], and so it is thought input gradient regularization
should not be effective on non-smooth networks. This raises the question, how often is the
lack of smoothness an issue, in practice? In other words, when do Taylor approximations of
the loss fail to predict adversarial robustness, and is smoothness only needed theoretically?
The fact that first-order gradient-based attacks of the loss (like PGD [MMS+17]) are usually
effective indicates that in many scenarios, non-smoothness is not an issue. However
in a non-negligible minority of cases, attacks based on decision boundary information
[CW17b, BRB18, CJ19, FPO19] outperform gradient based attacks. This indicates the cur-
vature near these points is large, and first-order information is not sufficient to guarantee
robustness. We illustrate this point in Fig 5.1. In this work we overcome the limitation of
gradient regularization for non-smooth networks by instead building networks of ‘smooth’
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ReLUs. At the expense of a minor drop in test accuracy, we obtain tighter theoretical lower
bounds on robustness, since we can better approximate the loss using local information.

Another drawback of input gradient regularization is that it is not presently tractable to
update model weights using double backpropagation on large networks. We circumvent
this limitation by differentiating the regularization term without double backpropagation.

Our main contributions are the following. First, we motivate using input gradient
regularization of the loss by deriving new theoretical robustness bounds. These bounds
show that small loss gradients and small curvature are sufficient conditions for adversarial
robustness. Second, we empirically show that input gradient regularization is competitive
with adversarial training, even on non-smooth networks, at a fraction of the training time.
Finally, we scale input gradient regularization to ImageNet-1k by using finite differences
to estimate the gradient regularization term, rather than double backpropagation. This
allows us to train adversarially robust networks on ImageNet-1k in 33 hours on four
consumer grade GPUs.

5.2 ADVERSARIAL ROBUSTNESS BOUNDS FROM THE LOSS

5.2.1 Background

Much effort has been directed towards determining theoretical lower bounds on the
minimum sized perturbation necessary to perturb an image so that it is misclassified by
a model. One promising approach, proposed by Hein and Andriushchenko [HA17] and
Weng et al. [WZC+18], and which has scaled well to ImageNet-1k, is to use the Lipschitz
constant of the model. In this section, we build upon these ideas: we propose using the
Lipschitz constant of a suitable loss, designed to measure classification errors. In addition,
when the loss is twice continuously differentiable, we propose a second-order bound based
on the maximum curvature of the loss.

Our notation is as follows. Write y = f(x;w) for a model which takes input vectors
x to label probabilities, with parameters w. Let L(y1, y2) be the loss and write `(x) :=
L(f(x,w), y), for the loss of a model f .

Finding an adversarial perturbation is interpreted as a global minimization problem:
find the closest image to a clean image, in some specified norm, that is is also misclassified
by the model

min
v
‖v‖ subject to f(x+ v) misclassified (5.2)

However, (5.2) is a difficult and costly non-smooth, non-convex optimization problem.
Instead, Goodfellow et al. [GSS14] proposed solving a surrogate problem: find a per-
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turbation v of a clean image x that maximizes the loss, subject to the condition that the
perturbation be inside a norm-ball of radius δ around the clean image. The surrogate
problem is written

max
v
`(x+ v)− c(v); where c(v) =

0 if ‖v‖ ≤ δ

∞ otherwise
(5.3)

The hard constraint c(v) forces perturbations to be inside the norm-ball centred at the
clean image x. Ideally, solutions of this surrogate problem (5.3) will closely align with
solutions of the original more difficult global minimization problem. However, the hard
constraint in (5.3) forces a particular scale: it may miss attacks which would succeed with
only a slightly bigger norm. Additionally, the maximization problem (5.3) does not force
misclassification, it only asks that the loss be increased.

x x + v

lo
ss

Smooth network loss
ReLU network loss
Smooth upper bound
Non-smooth upper bound

Figure 5.1: Illustration of upper
bounds on the loss of two net-
works. For smooth networks (blue)
with finite curvature, the loss is
bounded above using `(x) and
∇x`(x). Non-smooth networks (or-
ange) may have jumps in their gradi-
ents, which means robustness is not
guaranteed by small local gradients.

The advantage of (5.3) is that it may be solved
with gradient-based methods: present best-practice
is to use variants of projected gradient descent
(PGD), such as the iterative fast-signed gradient
method [KGB16, MMS+17] when attacks are mea-
sured in the `∞ norm. However, gradient-based
methods are not always effective: on non-smooth
networks, such as those built of ReLU activation
functions, a small gradient does not guarantee that
the loss remains small locally. This deficiency was
identified in [PMJ+16]. See Figure 5.1: ReLU net-
works may increase rapidly with a very small per-
turbation, even when local gradients are small.
PGD methods will fail to locate these worst-case
perturbations, and give a false impression of ro-
bustness. Carlini and Wagner [CW17b] avoid this
scenario by incorporating decision boundary in-
formation into the loss; others solve (5.2) directly
[BRB18, CJ19, FPO19].

5.2.2 Derivation of lower bounds

This leads us to consider the following compromise between (5.2) and (5.3). Consider the
following modification of the Carlini-Wagner loss [CW17b] `(x) = maxi 6=c fi(x) − fc(x),
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where c is the index of the correct label, and fi(x) is the model output for the i-th label.
This loss has the appealing property the sign of the loss determines if the classification is
correct. Adversarial attacks are found by minimizing

min
v
‖v‖ subject to `(x+ v) ≥ `0 (5.4)

The constant `0 determines when classification is incorrect; for the modified Carlini-
Wagner loss, `0 = 0. Problem (5.4) is closer to the true problem (5.2), and will always find
an adversarial image. We use (5.4) to derive theoretical lower bounds on the minimum
size perturbation necessary to misclassify an image. Suppose the loss is L-Lipschitz with
respect to model input. Then we have the estimate

`(x+ v) ≤ `(x) + L‖v‖ (5.5)

Now suppose v is adversarial, with minimum adversarial loss `(x + v) = `0. Then
rearranging (5.5), we obtain the lower bound ‖v‖ ≥ 1

L
(`0 − `(x)) .

Unfortunately, the Lipschitz constant is a global quantity, and ignores local gradient
information; see for example Huster et al. [HCC18]. Thus this bound can be quite poor,
even when networks have small Lipschitz constant. On the other hand, if the model is
twice continuously differentiable, then the loss landscape is smoother. This allows us to
achieve a tighter bound, using local gradient information, as illustrated in Figure 5.1. Let
C be an upper bound on the maximum positive eigenvalue of the Hessian of the loss over
all x

C :=
(

max
x

λmax(∇2
x`(x))

)+
(5.6)

This value will be estimated empirically by maximizing over the dataset. The constant C is
a measure of the largest positive curvature of the network. Using a Taylor approximation
about x, we may upper bound the perturbed loss with

`(x+ v) ≤ `(x) + 〈v,∇x`(x)〉+ C

2 ‖v‖
2
2 (5.7)

These two bounds give us the following.

Proposition 5.2.1. Suppose the loss `(x) is Lipschitz continuous with respect to model input x,
with Lipschitz constant L. Let `0 be such that if `(x) < `0, the model is always correct. Then a
lower bound on the minimum magnitude of perturbation v necessary to adversarially perturb an
image x is

‖v‖ ≥ max{`0 − `(x), 0}
L

(L-bound)

Suppose in addition that the loss is twice-differentiable, with maximum curvature C (defined as in
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(5.6)). Then

‖v‖2 ≥
1
C

(
−‖∇`(x)‖2 +

√
‖∇`(x)‖2

2 + 2C max {`0 − `(x), 0}
)

(C-bound)

The proof of (L-bound) is given above; the proof of (C-bound) follows by rearranging
(5.7) and solving for ‖v‖.

Remark 5.1. The second-order bound requires that the network and loss are smooth with
respect to the input, but almost all image classification networks now use ReLUs, which
are not smooth. We use the following smoothed ReLU

σ(x) =

max(x, 0) if |x| ≥ 1
2

−1
2

(
x+ 1

2

)4
+
(
x+ 1

2

)3
if |x| < 1

2

(5.8)

This activation function is twice continuously differentiable, and avoids the vanishing
gradient problem of smooth sigmoidal activation functions. Moreover because it agrees
with ReLU(x) outside of the interval (−1

2 ,
1
2), it is fairly efficient during backpropagation.

As for the loss, a smooth version of the Carlini-Wagner loss is available by using a soft
maximum, rather than a strict max.

Proposition 5.2.1 motivates the need for input gradient regularization. The Lipschitz
constant L is the maximum gradient norm of the loss over all inputs. Therefore (L-bound)
says that a regularization term encouraging small gradients (and so reducing L) should
increase the minimum adversarial distance. This aligns with [HA17], who proposed the
cross-Lipschitz regularizer, penalizing networks with large Jacobians in order to shrink
the Lipschitz constant of the network.

However, this is not enough: the gap `0 − `(x) must be large as well. This explains
one form of ‘gradient masking’ [PMG+17]. Shrinking the magnitude of gradients while
also closing the gap `0 − `(x) effectively does nothing to improve adversarial robustness.
For example, in defense distillation, the magnitude of the model Jacobian is reduced by
increasing the temperature of the final softmax layer of the network. However, this has the
detrimental side-effect of sending the model output to ( 1

N
, · · · , 1

N
), where N is the number

of classes, which effectively shrinks the loss gap to zero. Thus with high distillation
temperatures the lower bound provided by Proposition 5.2.1 approaches zero.

Moreover, even supposing the loss gradients are small and the gap `0 − `(x) is large,
there may still be adversarially vulnerable images. For example, suppose we have two
smooth networks, one with large curvature, and another with small curvature. Suppose
that there is an image with zero gradient on both networks, each with identically large loss
gaps `0 − `(x). The second-order bound (C-bound) says that the minimum adversarial
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distance here is bounded below by ‖v‖ ≥
√

max{`0 − `(x), 0}/C. In other words, the
network with smaller curvature is more robust.

Taken together, Proposition 5.2.1 provides three sufficient conditions for training robust
networks: (i) the loss gap `0 − `(x) should be large; (ii) the gradients of the loss should
be small; and (iii) the curvature of the loss should also be small. The first point will be
satisfied by default when the loss is minimized. The second point will be satisfied by
training with a loss regularized to penalize large input gradients. Experimentally the third
point is satisfied with input gradient regularization. When these conditions are satisfied,
local information is enough to guarantee robustness.

Our robustness bounds are most similar in spirit to Weng et al. [WZC+18], who derive
bounds using an estimate of the local Lipschitz constant of the model. Moosavi-Dezfooli
et al. [MFUF18] have also used a second order approximation to derive approximate
robustness bounds for binary classification, but they neglected higher order error terms.
Cohen et al. [CRK19] derive bounds by training with normally distributed input noise, then
averaging model predictions normally sampled about the input image. It is well known
that training with normal noise is equivalent to squared `2 norm gradient regularization
[Bis95]; thus Cohen et al. [CRK19] achieve gradient regularization indirectly. Our bounds
require at most one gradient and model evaluation per image once L and C have been
estimated; whereas both Cohen et al. and Weng et al. require many hundreds of local
model evaluations per image. Since L and C are globally estimated, our bounds could be
improved using these local sampling techniques to obtain local values of L and C, with
more computational effort.

5.3 SQUARED NORM GRADIENT REGULARIZATION

Proposition 5.2.1 provides strong motivation for input gradient regularization as a method
for promoting adversarial robustness. However, it does not tell us what form the gradient
regularization term should take. In this section, we show how norm squared gradient
regularization arises from a quadratic cost.

In adversarial training, solutions of (5.3) are used to generate images on which the
network is trained. In effect, adversarial training seeks a solution of the minimax problem

min
w

E
x∼P

[
max
v
`(x+ v;w)− c(v)

]
(5.9)

where P is the distribution of images. This is a robust optimization problem [Wal45, RL87].
The cost function c(v) penalizes perturbed images from being too far from the original.
When the cost function is the hard constraint from (5.3), perturbations must be inside a
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norm ball of radius δ. This leads to adversarial training with PGD [KGB16, MMS+17].
However this forces a particular scale: it is possible that no images are adversarial within
radius δ, but that there are adversarial images with only a slightly larger distance. Instead of
using a hard constraint, we can relax the cost function to be the quadratic cost c(v) = 1

2δ‖v‖
2.

The quadratic cost allows attacks to be of any size, but penalizes larger attacks more than
smaller attacks. With a quadratic cost, there is less of a danger that a local attack will be
overlooked.

Solving (5.9) directly is expensive: on ImageNet-1k, both Kannan et al. [KKG18] and
Xie et al. [XWvdM+18] required large-scale distributed training with many dozens or
hundreds of GPUs, and over a week of training time. Instead we take the view that (5.9)
may be bounded above, and solved approximately. When the loss is smooth and c(v) =
1
2δ‖v‖

2, the optimal value of maxv `(x+ v)− c(v) using the bound (5.7) is δ
2(1−δC)‖∇x`(x)‖2

∗,
provided δ < 1

C
. This gives the following proposition.

Proposition 5.3.1. Suppose both the model and the loss are twice continuously differentiable.
Suppose attacks are measured with quadratic cost 1

2δ‖v‖
2. Then the optimal value of (5.9) is

bounded above by

min
w

E
x∼P

[
`(x;w) + λ

2‖∇x`(x)‖2
∗

]
(5.10)

where λ = δ
1−δC .

That is, we may bound the solution of the adversarial training problem (5.9) by solving
the gradient regularization problem (5.10), when the cost function is quadratic. It is not
necessary to know δ or compute C; they are absorbed into λ. In the adversarial robustness
literature, input gradient regularization using the squared `2 norm was proposed by Ross
and Doshi-Velez [RD18]. It was expanded by Roth et al. [RLNH18] to use a Mahalanobis
norm with the correlation matrix of adversarial attacks. When c(v) is the hard constraint
forcing attacks inside the δ norm ball and C is small, supposing the curvature term is
negligible, we can estimate the maximum in (5.9) by `(x) + 1

δ
‖∇x`(x)‖∗, using the dual

norm for the gradient. This is norm gradient regularization (not squared), and was recently
used for adversarial robustness on both CIFAR-10 [SOS+18], and MNIST [SLC19].

5.3.1 Finite difference implementation

Norm squared input gradient regularization has long been used as a regularizer in neural
networks: Drucker and LeCun [DL91] first showed its effectiveness for generalization.
Drucker and LeCun [DL91] implemented gradient regularization with ‘double backpropa-
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gation’ to compute the derivatives of the penalty term with respect to the model parameters
w, which is needed to update the parameters during training. Double backpropagation
involves two passes of automatic differentiation: one pass to compute the gradient of the
loss with respect to the inputs x, and another pass on the output of the first to compute
the gradient of the penalty term with respect to model parameters w. In neural networks,
double backpropagation is the standard technique for computing the parameter gradient
of a regularized loss. However, it is not currently scaleable to large neural networks.
Instead we approximate the gradient regularization term with finite differences.

Proposition 5.3.2 (Finite difference approximation of squared `2 gradient norm). Let d be
the normalized input gradient direction: d = ∇x`(x)/‖∇x`(x)‖2 when the gradient is nonzero,
and set d = 0 otherwise. Let h be the finite difference step size. Assume further that the loss is twice
continuously differentiable. Then, the squared `2 gradient norm is approximated by

‖∇x`(x)‖2
2 ≈

(
`(x+ hd)− `(x)

h

)2

(5.11)

The vector d is normalized to ensure the accuracy of the finite difference approximation,
which is of order h, as can be seen by a Taylor approximation. The finite differences
approximation (5.11) allows the computation of the gradient of the regularizer (with respect
to model parameters w) to be done with only two regular passes of backpropagation, rather
than with double backpropagation. On the first, the input gradient direction d is calculated.
The second computes the gradient with respect to model parameters by performing
backpropagation on the right-hand-side of (5.11). Double backpropagation is avoided
by detaching d from the computational graph after the first pass. In practice, for large
networks, we have found that the finite difference approximation of the regularization
term is considerably more efficient than using double backpropagation.

The proposed training algorithm, with squared Euclidean input gradient regularization,
is presented in Algorithm 2. Other gradient penalty terms can be approximated as well.
For example, when defending against attacks measured in the `∞ norm, the squared `1

norm penalty can approximated by setting instead d = sgn(∇x`(x))/
√
N when the gradient

is nonzero.

5.4 EXPERIMENTAL RESULTS

In this section we provide empirical evidence that input gradient regularization is an
effective tool for promoting adversarial robustness, even on non-smooth networks built with
standard ReLU activation functions.
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Algorithm 2 Training with squared `2-norm input gradient regularization, using finite
differences

1: Input: Initial model parameters w0
Hyperparameters: Regularization strength λ; batch size m; finite difference discretiza-
tion h

2: while wt not converged do
3: sample minibatch of data

{
(x(i), y(i))

}
i=1,...,m

from empirical distribution P̂

4: for i = 0 to m do
5: g(i) = ∇x`(x(i), y(i);wt)

6: d(i) =


g(i)

‖g(i)‖2
if g(i) 6= 0

0 otherwise
. for `1-norm use normalized signed gradient

7: detach d(i) from computational graph
8: z(i) = x(i) + hd(i)

9: end for
10: L(w) = 1

m

∑m
i=1 `(x(i), y(i);w)

11: R(w) = 1
m

∑m
i=1

1
h2

(
`(z(i), y(i);w)− `(x(i), y(i);w)

)2

12: wt+1 ← wt − τt∇w (L(wt) + λR(wt))
13: end while
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Figure 5.2: Adversarial attacks on the CIFAR-10 dataset, on networks built with standard
ReLUs. Regularized networks attacked in `2 are trained with squared `2 norm gradient
regularization; networks attacked in `∞ are trained with squared `1 norm regularization.
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Figure 5.3: Adversarial attacks on ImageNet-1k with the ResNet-50 architecture. Top5
error reported.

We train networks on the CIFAR-10 dataset [KH09], and ImageNet-1k [DDS+09]. On
the CIFAR dataset we use the ResNeXt architecture1 [XGD+17]; on ImageNet-1k we use a
ResNet-50 [HZRS16]. The CIFAR networks were trained with standard data augmentation
and learning rate schedules on a single GeForce GTI 1080 Ti. On ImageNet-1k, we modified
the training code of Shaw et al.’s [SBH] submission to the DAWNBench competition
[CKN+18] and train with four GPUs. Training code and trained model weights will be
made available.

We train an undefended network as a baseline to compare various types of regulariza-
tion. On CIFAR-10, networks are trained with squared `2 and squared `1 gradient norm
regularization. The former is appropriate for defending against attacks measured in `2; the
latter for attacks measured in `∞. We set the regularization strength to be either λ = 0.1
or 1; and set finite difference discretization h = 0.01. We compare each network with
the current state-of-the-art form of adversarial training, with models trained using the
hyperparameters in Madry et al. [MMS+17] (7-steps of FGSM, `∞ step size 2

255 , projected
onto an `∞ ball of radius 8

255 ). On ImageNet-1k we only train adversarially robust models
with squared `2 regularization.

On each dataset, we attack 1000 randomly selected images. We perturb each image
with attacks in both the Euclidean and `∞ norms, with a suite of current state-of-the-art
attacks: the Carlini-Wagner attack [CW17b]; the Boundary attack [BRB18]; the LogBarrier
attack [FPO19]; and PGD [MMS+17] (in both the `∞ norm or the `2 norm). The former
three attacks are effective at evading gradient masking defences; the latter is very good at
finding images close to the original when gradients are not close to zero. We record the

1ResNeXt34-2x32 on CIFAR-10; ResNeXt34-2x64 on CIFAR-100
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Table 5.1: Adversarial robustness statistics, measured in the `∞ norm. Top1 error is reported
on CIFAR-10; Top5 error on ImageNet-1k.

smooth
ReLU?

% clean
error

% error at mean
distance

improvement
ratio

training
time (hours)

ε = 2
255 ε = 8

255

CIFAR-10
Undefended 4.36 70.82 98.94 6.62e−3 - 2.06
Madry et al (7-step AT) 16.33 22.86 46.022 4.07e−2 1.88 12.10
squared `1 norm, λ = 0.1 6.45 24.92 70.41 2.35e−2 5.31 5.22
squared `1 norm, λ = 1 9.02 18.47 58.69 3.34e−2 3.78 5.15
ImageNet-1k
Undefended 6.94 90.21 98.94 3.94e−3 - 20.30
Undefended X 9.39 82.03 95.42 9.74e−3 4.17 23.46
squared `2 norm, λ = 0.1 7.66 70.56 97.53 7.96e−3 9.83 32.60
squared `2 norm, λ = 0.1 X 9.49 63.23 94.21 1.24e−2 5.84 52.47
squared `2 norm, λ = 1 10.26 52.79 95.93 9.95e−3 3.19 33.87

best adversarial distance on a per image basis, for each norm.

Adversarial robustness results for networks attacked in the `∞ norm are presented in
Table 5.1. These results are for networks built of standard ReLUs. Table 5.1 and Figures 5.2
and 5.3 demonstrate a clear trade-off between test accuracy and adversarial robustness,
as the strength of the regularization is increased. On CIFAR-10, the undefended network
achieves test error of 4.36%, but is not robust to attacks even at `∞ distance 2

255 . However
with a strong regularization parameter (λ = 1), test error increases to 9.02% on clean
images, and only 18.47% test error at attack distance 2

255 . In contrast, the network trained
with 7-steps of adversarial training appears to be over-regularized: on clean images, the
adversarially trained network achieves 16.33% test error, but 22.86% error at distance

2
255 . To be fair, at the commonly reported `∞ of 8

255 , the adversarially trained network
outperforms the best gradient regularized networks by about 12%, but at over twice the
training time of the regularized networks. On ImageNet, we see a reduction of nearly 40%
at distance 2

255 .

It has been noted that adversarial robustness comes with a cost of degraded test error
[TSE+18]. This trade-off may be quantified. We measure the relative improvement in
adversarial robustness against the cost of degraded test error with the following metric.
Suppose an undefended network has test error e0, and let a regularized network’s network

2Madry et al report 54.2% error at ε = 8
255 with the WRN-28x10 architecture; our results are obtained

with ResNeXt34 (2x32).
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test error be denoted eλ. Define the relative degradation in test error to be Re = (eλ−e0)/e0.
Similarly define the relative improvement in robustness (measured by mean adversarial
distance µ) to be Rµ = (µλ−µ0)/µ0. We define the adversarial improvement ratio to be Rµ/Re.
This measures the improvement in adversarial robustness against the expense of poorer
test error: high values mean the defended model is much more robust and has not lost
significant test accuracy. Values close to zero imply the model is more robust but has a
much worse test accuracy relative to the undefended model. The improvement ratio is
non-dimensional, and so it allows for comparison between datasets.

Measured in this metric, the tradeoff between test accuracy and adversarial robustness
is clear. On both ImageNet-1k and CIFAR-10, models regularized with λ = 0.1 offer the
best trade-off between robustness and test error. If test accuracy is not of foremost concern,
then stronger regularization parameters may be chosen. If neither training time nor test
accuracy are important factors, then adversarial training is competitive with gradient
regularization.

In Table 5.3 we report results on models trained for attacks in the `2 norm. On CIFAR-10,
the most robust model is trained with regularization strength λ = 1, and outperforms even
the adversarially trained model. On ImageNet-1k, we see the same pattern: the model
trained with λ = 1 offers the best protection against adversarial attacks. Due to the long
training time, we were not able to train ImageNet-1k with multi-step adversarial training.

In Table 5.3 we also report our theoretical bounds on the minimum distance required
to adversarially perturb, using the Carlini-Wagner loss.3 Figures 5.4 and 5.5 show these
bounds on a per-image basis. The theoretical bounds require calculating constants L and
C, which are not readily available. Instead, we estimate L as the maximum gradient norm
over test images; for smooth models we estimate C as the maximum spectral norm of the
Hessian.4 These estimates are reported in Table 5.2. Gradient regularization reduces L and
C, by one to two orders of magnitude. Table 5.2 shows adversarial training also reduces L:
effectively adversarial training is a regularizer. Because L and C are estimated, and not
exact, one would expect that our bounds would sometimes fail. However, on CIFAR-10,
the bounds reliable held on all attacked images. On ImageNet-1k, the bounds failed on
about 9% of attacked test images, which indicates that C and L could be estimated more
accurately, for example using by estimating these constants locally like in [WZC+18].

3This loss can be modified for Top-5 mis-classification as well.
4We compute the spectral norm of the Hessian using the Lanczos algorithm [GVL12, §10.1] on Hessian-

vector products (computed via automatic differentiation).
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Figure 5.4: Theoretical minimum lower bound on adversarial distance for CIFAR-10,
on networks with smooth ReLU activation functions. Defended networks trained with
λ = 0.1, penalized with squared `2 norm gradient.
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Figure 5.5: Theoretical minimum lower bound on adversarial distance for ImageNet-1k,
on networks with smooth ReLU activation functions. Defended networks trained with
λ = 0.1, penalized with squared `2 norm gradient.

5.5 CONCLUSION

We have provided motivation for training adversarially robust networks through input
gradient regularization, by bounding the minimum adversarial distance with gradient
and curvature statistics of the loss. We have shown empirically that gradient regulariza-
tion is scaleable to ImageNet-1k, and provides adversarial robustness competitive with
adversarial training. We gave theoretical per-image bounds on the minimum adversarial
distance, for non-smooth models (using the Lipschitz constant of the loss), and augmented
these bounds using smooth models with a second-order bound based on model curvature.
These bounds were empirically validated against state-of-the-art attacks.
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Table 5.2: Regularity statistics on selected models, measured in the `2 norm. Statistics
computed using modified loss maxi 6=c fi(x)− fc(x) . A soft maximum is used for curvature
statistics.

soft
ReLU?

mean maximum

‖∇`(x)‖ ‖∇2`(x)‖ ‖∇`(x)‖ ‖∇2`(x)‖

CIFAR-10
Undefended 3.05 - 122.34 -
Undefended X 3.25 198.23 65.35 8134.26
Madry et al (7-step AT) 0.40 - 2.52 -
squared `2 norm, λ = 0.1 0.58 - 4.43 -
squared `2 norm, λ = 0.1 X 0.65 2.08 4.52 27.05
squared `2 norm, λ = 1 0.35 - 1.33 -
ImageNet-1k
Undefended 1.12 - 17.51 -
Undefended X 1.02 11.61 25.43 848.69
squared `2 norm, λ = 0.1 0.46 - 4.85 -
squared `2 norm, λ = 0.1 X 0.45 1.87 6.99 171.98
squared `2 norm, λ = 1 0.27 - 2.12 -
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Table 5.3: Adversarial robustness statistics, measured in `2. Top1 error is reported on
CIFAR-10; Top5 error on ImageNet-1k.

smooth
ReLU?

% clean
error

mean adversarial distance improve-
ment
ratio

training
time

(hours)L-bound C-bound empirical

CIFAR-10
Undefended 4.36 5.57e−3 - 0.12 - 2.06
Undefended X 6.84 1.01e−2 1.19e−2 0.11 −0.20 3.78
Madry et al (7-step AT) 16.33 0.18 - 0.74 1.81 12.10
squared `2 norm, λ = 0.1 8.03 0.14 - 0.63 4.86 5.18
squared `2 norm, λ = 0.1 X 11.68 0.13 0.17 0.59 2.25 9.46
squared `2 norm, λ = 1 20.31 0.30 - 0.81 1.52 5.08
ImageNet-1k
Undefended 6.94 3.63e−2 - 0.55 - 20.30
Undefended X 9.39 2.56e−2 3.40e−2 0.56 0.12 23.46
squared `2 norm, λ = 0.1 7.66 0.13 - 1.14 10.23 32.60
squared `2 norm, λ = 0.1 X 9.49 9.23e−2 7.52e−2 1.09 2.64 52.47
squared `2 norm, λ = 1 10.26 0.26 - 1.75 4.52 33.87
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