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Abstract. Finite difference schemes are the method of choice for solving nonlinear, degenerate
elliptic PDEs, because the Barles--Souganidis convergence framework [G. Barles and P. E. Souganidis,
Asymptotic Anal., 4 (1991), pp. 271--283] provides sufficient conditions for convergence to the unique
viscosity solution [M. G. Crandall, H. Ishii, and P.-L. Lions, Bull. Amer. Math. Soc. (N.S.), 27 (1992),
pp. 1--67]. For anisotropic operators, such as the Monge--Amp\`ere equation, wide stencil schemes are
needed [A. M. Oberman, SIAM J. Numer. Anal., 44 (2006), pp. 879--895]. The accuracy of these
schemes depends on both the distances to neighbors, R, and the angular resolution, d\theta . On regular
grids, the accuracy is \scrO (R2 + d\theta ). On point clouds, the most accurate schemes are of \scrO (R+ d\theta ), by
Froese [Numer. Math., 138 (2018), pp. 75--99]. In this work, we construct geometrically motivated
schemes of higher accuracy in both cases: order \scrO (R + d\theta 2) on point clouds, and \scrO (R2 + d\theta 2) on
regular grids.
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1. Introduction. The goal of this paper is to build more accurate convergent
discretizations for the class of nonlinear elliptic PDEs [CIL92]. Our schemes are appli-
cable in both two and three dimensions for a class of PDEs which includes the convex
envelope operator and the Pucci operator, as well as the Monge--Amp\`ere operator.
Convergent discretizations for these second order operators are available on regular
grids [Obe08b], but the accuracy of these schemes depends on both the distances to
neighbors, R, and the angular resolution, d\theta . On regular grids, the accuracy (the
discretization error of the operator) is \scrO (R2 + d\theta ). More recently, Froese [Fro18]
developed methods on point clouds of accuracy \scrO (R+ d\theta ). These schemes were used
for freeform optical design to shape laser beams [FFL+17], an application which re-
quired nonregular grids. In this work, we construct geometrically motivated schemes
of higher accuracy in both cases: order \scrO (R+ d\theta 2) on point clouds, and \scrO (R2 + d\theta 2)
on regular grids.

Even higher accuracy is possible when the operator is uniformly elliptic. For ex-
ample, in the set of papers [BCM16, FM14, Mir14a, Mir14b], Mirebeau and coauthors
developed a framework for constructing \scrO (h2) monotone and stable schemes for sev-
eral functions of the eigenvalues of the Hessian on regular grids in two dimensions.
Related work for discretization of convex functions is studied in [Mir16]. Mirebeau
studied monotone discretization of first order (Eikonal-type) equations on triangu-
lated grids [Mir14a] as well as second order Monge--Amp\`ere-type operators [Mir14b].
In the latter case, he obtains nearly optimal accuracy, but his construction is most ef-
fective when the operator is uniformly elliptic: as the operator degenerates, the width
of the stencil increases. Moreover, the elegant construction based on the Stern--Brocot
tree is particular to two dimensions.
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Higher accuracy is also possible using filtered schemes [FO13, OS15, BPR16].
Filtered schemes combine a base monotone scheme with a higher accuracy scheme:
however, increased accuracy of the base scheme is beneficial to the filtered scheme,
since it allows for a smaller filter parameter.

The challenge of building monotone convergent finite difference schemes is illus-
trated in [CWL16, CW17], where the Monge--Amp\`ere equation is discretized in two
dimensions. In [CWL16], a mixture of a 7-point stencil for the cross derivative and
a semi-Lagrangian wide stencil was used. The 7-point stencil was used for the cross
derivative when it is monotone; otherwise the wide stencil was employed. This ap-
proach was later employed in a coarsening strategy for multigrid in [CW17] but does
not fully solve the problem of building narrow monotone stencils and has not been
generalized to higher dimensions.

Another approach lies between the wide stencil finite difference approach and the
finite element approach. In [NNZ19], a convergent method on an unstructured mesh
is constructed on two separate scales, specifically for the Monge--Amp\`ere equation.
In this work, the authors of [NNZ19] prove the convergence of their method while
disentangling dependence between the spatial and directional resolution parameters.
The focus of [NNZ19] was on the asymptotic convergence of their method. In contrast,
our method aims for high accuracy given a fixed grid size, which is more consistent
with computational restrictions. Our method is similar to [NNZ19] in that we also use
linear interpolation to construct our finite difference scheme. The two-scale method of
[NNZ19] uses interpolation of an n-dimensional simplex and is consistent on interior
grid points away from a strip of the boundary. Our method uses interpolation of
(n  - 1)-dimensional simplices and is consistent on all interior points. For a recent
review of current methods, see [NSZ17].

The need for wide stencils arises from the anisotropy of the operators. For iso-
tropic operators, such as the Laplacian, or for operators whose second order anisotropy
happens to align with the grid (essentially combinations of uxx and uyy terms), an
adaptive quadtree grid discretization was developed in [OZ16]. An adaptive quadtree
grid was combined with the \scrO (R+d\theta ) mesh-free method of Froese [Fro18] and filtered
schemes [OS15, FO13] in [FS17].

The main idea of this work is based on locating the reference point within two
triangles (in two dimensions) or simplices (in three or higher dimensions) and using
barycentric coordinates [DB08, sect. 5.4, p. 595] to write down the discretization.
For first order derivatives, only one simplex is needed. It is standard to write a
gradient of a function based on linear interpolation; extending this to a directional
derivative amounts to computing a dot product. However, for second directional
derivatives, it is possible to use two simplices to compute a monotone discretization
of the second directional derivative, with accuracy which depends on the relative sizes
of the simplices.

1.1. Off-directional discretizations. When the direction w does not align
with the grid, the d\theta term appears in the expression for the finite difference accuracy.
If u is discretized on a regular grid, then one common approach is to choose the nearest
grid direction vh to w, and take the finite difference along this approximate direction,
as in [Obe08b]. In the symmetric case for the second derivative, the finite difference
remains \scrO (h2) but picks up a directional resolution error d\theta . This directional res-
olution error is first order and is given as d\theta = arccos\langle w, vh/ \| vh\| \rangle . Overall, this
approach is \scrO (d\theta +R2) accurate, where R is the stencil radius. On a grid with spatial
resolution h, one can show that for a desired angular resolution d\theta , the stencil radius
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Table 1
Comparison of the discretizations.

Scheme Order Optimal d\theta Formal ac-
curacy

Comments

Nearest grid direction
[Obe08b]

\scrO (R2 + d\theta ) \scrO (h
2
3 ) \scrO (h

2
3 ) Regular grids. Difficult imple-

mentation near boundaries.

Two-scale convergence
[NNZ19]

\scrO (R2 + d\theta 2) \scrO (h
1
2 ) \scrO (h) n-d, for triangulations. Consis-

tent away from boundary.

Froese [Fro18] \scrO (R+ d\theta ) \scrO (h
1
2 ) \scrO (h

1
2 ) 2d, mesh-free. No difficulty at

boundary.

Linear interpolant,
symmetric

\scrO (R2 + d\theta 2) \scrO (h
1
2 ) \scrO (h) n-d, regular grids. No diffi-

culty at boundary.

Linear interpolant,
nonsymmetric

\scrO (R+ d\theta 2) \scrO (h
1
3 ) \scrO (h

2
3 ) n-d, mesh-free. No difficulty at

boundary.

R is \scrO ( h
d\theta ) (see, for example, [Fro18] for details). With optimal choice d\theta =

\bigl( 
2h2
\bigr) 1

3 ,

this scheme is therefore formally \scrO (h 2
3 ). Although appealing due to its simplicity,

this scheme suffers some drawbacks. It is only appropriate on regular finite difference
grids and encounters difficulties discretizing u near the boundary of the domain.

Recent work by Froese [Fro18] treats the more general case where u is discretized
on a cloud of point \scrG . Froese presents a monotone finite difference scheme for the
second derivative which is \scrO (R + d\theta ). The parameter R is a search radius, which
will be defined more precisely later. Set h = supx\in \Omega minxj\in \scrG \| x - xj\| . Then (as

in the previous method) for a desired angular resolution, R is \scrO 
\bigl( 

h
d\theta 

\bigr) 
, and so with

the optimal choice of d\theta =
\surd 
h, the method is formally \scrO 

\bigl( \surd 
h
\bigr) 
. Unfortunately, this

scheme does not generalize easily to higher dimensions.
In what follows, we present a monotone and consistent finite difference scheme

for the first and second derivatives which overcomes the deficiencies of the preceding
two methods. For the second derivative, if the grid is not regular, our scheme has
accuracy \scrO (R + d\theta 2), or formally \scrO (h 2

3 ). Further in the regular case, the scheme is
\scrO (R2 + d\theta 2) and is formally \scrO (h). The method works in dimension two and higher
and can be used on any set of discretization points, regular or otherwise. Under mild
requirements on the spatial resolution of the domain boundary (see Lemma 3), the
scheme can easily be implemented near the boundary of a domain as well, with an
appropriate choice of boundary resolution (see Remark 1). In particular, the scheme
easily handles Neumann boundary conditions on nonrectangular domains.

Using these schemes as building blocks, we build monotone, stable, and consistent
schemes for nonlinear degenerate elliptic equations on arbitrary meshes.

Table 1 presents a summary of the second derivative schemes discussed in this
paper.

1.2. Directional discretizations. The basic building blocks of our discretiza-
tion are first and second order directional derivatives. This is in contrast to the work
of Mirebeau, where two-dimensional shapes built up of triangles are chosen to match
the ellipticity of the operator.

Write the first and second directional derivatives of a function u in the direction
w (with | | w| | = 1) as

uw = \langle w,Du\rangle , uww = w\sansT D2uw,

where Du and D2u are the gradient and Hessian of u, respectively.
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Define the forward difference in the direction v by

\scrD vu(x) =
u(x+ v) - u(x)

| v| 
.

The first order monotone finite difference schemes for uw in the directions tw and
 - tw are given by

\scrD twu(x) = uw(x) +\scrO (t),
\scrD  - twu(x) = uw(x) +\scrO (t).

The simplest finite difference scheme for uww is the centered finite difference scheme

u(x+ tw) - 2u(x) + u(x - tw)

t2
=

1

t
[\scrD twu(x) +\scrD  - twu(x)](1)

= uww(x) +\scrO (t2).

The generalization to unequally spaced points is clear from (1):

2

tp + tm

\bigl[ 
\scrD tpwu(x) +\scrD  - tmwu(x)

\bigr] 
= uww(x) +\scrO (t+),

where t+ = max\{ tp, tm\} (in general, the scheme is first order accurate, unless tp = tm).

1.3. Directional finite differences using barycentric coordinates. Sup-
pose we want to compute uw(x0) using values u(xi) which determine a simplex. Using
linear interpolation, we can approximate the value of u(x+ tpw) on the boundary of
the simplex. A convenient expression for this value is given by using barycentric coor-
dinates (see, for example, [DB08, sect. 5.4, p. 595]), which allows us to generalize (1).

Suppose \scrS m and \scrS p are the vertices of an (n - 1)-dimensional simplex. Suppose
further that

r \leq \| x0  - xi\| \leq R for all xi \in \{ \scrS m,\scrS p\} .

Suppose further that

xp = x0 + tpw is in the simplex determined by \scrS p,
xm = x0  - tmw is in the simplex determined by \scrS n

for tm, tp \in [r,R]. Construct the corresponding linear interpolants Lm and Lp:

Lp(x) =
\sum 
i\in \scrS p

\lambda i
p(x)u(xi),

Lm(x) =
\sum 
i\in \scrS m

\lambda i
m(x)u(xi).

Here \lambda p(x) and \lambda m(x) are the barycentric coordinates in \scrS p and \scrS m respectively.
The barycentric coordinates are easily constructed. Let vpi = xi  - x0, i \in \scrS p, and
similarly define vmi . By assumption, all vi's satisfy r \leq | | vi| | \leq R. Let Vp be the
matrix

Vp =
\bigl[ 
vp1 vp2 . . . vpn

\bigr] 
.

Then \lambda p is given by solving
Vp\lambda p = x.
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The barycentric coordinates \lambda m for \scrS m are defined analogously. By virtue of convexity,
if x lies in the (relative) interior of a simplex, its barycentric coordinates are positive
and sum to one.

Barycentric coordinates allow us to define the finite difference schemes for the
first and second directional derivatives as follows.

Definition 1 (first derivative scheme). The first derivative scheme takes two
forms, upwind and downwind, respectively:

\scrD wu(x0) :=
1

tp
(Lp(x0 + tpw) - u(x0)) , tp =

1

1\sansT V  - 1
p w

,(2)

\scrD  - wu(x0) :=
1

tm
(Lp(x0  - tmw) - u(x0)) , tm =

 - 1
1\sansT V  - 1

m w
.

Definition 2 (second derivative scheme). The second derivative scheme is de-
fined as

\scrD wwu(x0) =
2 (\scrD wu(x0) +\scrD  - wu(x0))

tp + tm
,

with tp and tm as given above.

Lemma 1 (monotone and stable). The finite difference schemes of Definitions
1 and 2 are monotone and stable.

Proof. By convexity, we are guaranteed that 0 \leq \lambda i
p,m \leq 1. Further, we have

that both
\sum 

\lambda i
p =

\sum 
\lambda i
m = 1. This corresponds to a monotone discretization of the

operator [Obe06].

In the application below, we will use long, slender simplices, which are oriented
near the directions \pm w, and control the interior and exterior radii, in order to establish
the accuracy of the schemes.

2. The framework. In this section, we introduce a framework for constructing
monotone finite difference operators on a point cloud in two or three dimensions. To
implement the method, we require finding triangles (in two dimensions) or tetrahedra
(in three dimensions) which contain the reference point. The neighbors of the reference
point form (n - 1)-dimensional simplices. In practice, these simplices are found using
an underlying triangulation, which could be provided by a mesh generator. (See
Algorithm 1 in section 2.3 for details.) The configuration of these simplices determines
the accuracy of the scheme.

2.1. Notation.
\bullet \Omega \subset \BbbR n is an open convex bounded domain with Lipshitz boundary \partial \Omega . We

focus on the cases n = 2 and n = 3.
\bullet \scrG \subset \=\Omega is a point cloud with points xi, i = 1 . . . N .
\bullet If \scrG is given as the undirected graph of a triangulation, then A is the corre-
sponding adjacency matrix of the graph.

\bullet h = supx\in \Omega miny\in \scrG \| x - y\| is the spatial resolution of the graph. Every ball
of radius h in \=\Omega contains at least one grid point.

\bullet hB = supx\in \partial \Omega miny\in \scrG \cap \partial \Omega \| x - y\| is the spatial resolution of the graph on the
boundary.

\bullet \delta = minx\in \scrG \cap \Omega miny\in \scrG \cap \partial \Omega \| x - y\| is the minimum distance between an inte-
rior point and a boundary point.

\bullet \ell is the minimum length of all edges in the graph \scrG .
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w

h

C2h

w\bot 

xi

xj

\scrS 

(a) C2 = 2

PxiPxj

Pxk

\scrS 
hC3h Pw

(b) C3 = 1 + 2\surd 
3

Fig. 1. There exists an n  - 1 simplex \scrS enclosing w, contained within ball of radius Cnh. In
1b, projections onto a plane perpendicular to w are shown.

\bullet d\theta is the desired angular resolution. We shall require at least d\theta < \pi .
\bullet R = Cnh(1 + cosec(d\theta 2 )) is the maximal search radius and depends only on

the angular resolution, the spatial resolution, and a constant Cn determined
by the dimension.

\bullet r = Cnh( - 1 + cosec(d\theta 2 )) is the minimal search radius. We will see that the
minimal search radius is necessary to guarantee convergence of the schemes.
Further, to guarantee the convergence of schemes near the boundary, it will
be necessary to require \delta \geq r.

\bullet Cn is a constant determined by the dimension. In \BbbR 2, C2 = 2; in \BbbR 3, C3 =
1 + 2\surd 

3
.

The construction of the schemes above requires the existence of simplices which
intersect the vector w. For accuracy, we further require that the angular resolution
of the simplices' diameter relative to the point x0 is less than d\theta . The following three
lemmas show that for given angular and spatial resolutions, such schemes exist. See
Figure 1.

Lemma 2 (existence of scheme away from boundary). Take x0 \in \scrG having
dist(x0, \partial \Omega ) \geq R. Then it is possible to construct the simplices used in Definition 1.

Proof. We must show that \scrS p and \scrS m exist. We first show the existence of the
simplex \scrS p; \scrS m follows similarly. Define the cone

K :=

\biggl\{ 
x | \langle v, w\rangle 

\| v\| 
\geq 1 - cos

\biggl( 
d\theta 

2

\biggr) 
, v = x - x0

\biggr\} 
.

Any two points in K have an angular resolution (relative to x0) less than d\theta . There-
fore, choosing points in this cone ensures the angular resolution is satisfied.

We must now show that the set \scrG \cap K contains points defining \scrS p. By construc-
tion, any ball in the interior of \Omega with radius h contains at least one interior point.
Therefore, we may construct a simplex intersecting the line x0+ tw, t \in \BbbR , by placing
n kissing balls on a plane w\bot perpendicular to w and choosing a point from within
each ball. Using simple geometrical arguments (cf. Apollonius's problem), it can be
shown that these n balls of radius h are all contained within a larger ball of radius
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Cnh

w

\scrS xi

xj

x0

R

K \cap \=B(x0, R)

b
a

cd\theta 
2

d\theta 
2

a = Cnh sin(d\theta /2)
b = Cnh cos(d\theta /2)
c = b cot(d\theta /2)
R = Cnh+ a+ c

= Cnh(1 + cosec(d\theta /2))

(a) Interior simplex

x0

\partial \Omega 

xi

xk

\scrS 

2\delta tan(d\theta 2 )
\delta 

w

d\theta 
2

(b) Boundary simplex

Fig. 2. Construction of simplices for the finite difference scheme on an interior point suffi-
ciently far from the boundary ( 2a) and on a point near the boundary ( 2b).

Cnh (with C2 = 2 and C3 = 1 + 2\surd 
3
). See Figure 1. Thus, a candidate simplex is

guaranteed to exist within every ball of radius Cnh with its center on the line x0+ tw.
Let this larger ball be \=B(x0 + (R - Cnh)w,Cnh). See Figure 2a. Simple trigono-

metric arguments show that this ball is contained within the cone K. Therefore, the
cone K contains the desired simplex \scrS p.

Similar reasoning gives the existence of \scrS m. Taken together, this allows for the
construction of the schemes.

Lemma 3 (existence of interior scheme near boundary). Take x0 \in \scrG \cap \Omega with
dist(x0, \partial \Omega ) < R. If the spatial resolution of \scrG on the boundary is such that CnhB \leq 
\delta tan(d\theta 2 ) and the angular resolution is small enough (dependent on the regularity of
the boundary), then the scheme given by Definition 1 exists.

Proof. We first will show Sp exists; the existence of \scrS m follows analogously. With
the cone K defined as in the previous lemma, we must show that \scrG \cap K contains
points defining \scrS p.

Suppose first that \=B(x0, R) \cap K \subset \Omega . Then the existence of \scrS p follows from
Lemma 2.

Suppose instead that \=B(x0, R) \cap K is not entirely contained within \Omega . If d\theta is
small enough, then a portion of the boundary is contained within \=B(x0, R) \cap K,

\| x0  - y\| < R if y \in \partial \Omega \cap K.

By construction, dist(x0, \partial \Omega ) \geq \delta . Therefore, the diameter of this portion of the
boundary is at least \delta tan(d\theta 2 ) \geq Cnh. Using geometrical reasoning similar to that in
the previous lemma (see Figure 2b), there must be n points on the boundary defining
the simplex \scrS p.

The previous two lemmas guarantee the first and second derivative schemes exist
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on the interior of the domain. The existence of the first derivative scheme on the
boundary is, in general, not a simple exercise: existence depends on the regularity of
the domain, the angle formed by w, and the boundary normal n, h, hB , and \delta . For
our purposes, we guarantee the existence of a scheme for the normal derivative with
the following lemma.

Lemma 4 (existence of normal derivative scheme on the boundary). Define
the set \Omega \delta := \{ x \in \Omega | dist(x, \partial \Omega ) \geq \delta \} . Suppose \Omega \delta is such that for every x \in \Omega \delta ,
x \in \=B(y, Cnh) \subset \Omega \delta for some y \in \Omega \delta . Suppose further that the minimum distance \delta 
between interior points and boundary points is less than the minimum search radius
r. Then the scheme \scrD nu(x0) for the inward pointing normal derivative exists for all
boundary points.

Proof. Let x0 be a boundary point. If \delta < r, then the search ball \=B(x0 + (R  - 
Cnh)n,Cnh) is contained entirely within \Omega . Thus, by the same arguments as in the
proof of Lemma 2, the simplex \scrS p exists and has an angular resolution less than d\theta .
This allows for the construction of (2) for the normal derivative.

Combining these three lemmas guarantees existence of the schemes.

Theorem 1 (existence of schemes). Suppose \scrG is a point cloud in \Omega with bound-
ary resolution CnhB \leq \delta tan(d\theta 2 ). With small enough d\theta , the first and second deriva-
tive schemes defined, respectively, by Definitions 1 and 2 exist for all interior points
x0 \in \scrG \cap \Omega . If in addition every x \in \Omega \delta lies within a ball \=BCnh \subset \Omega \delta and \delta < r,
the scheme \scrD nu(x0) for the inward normal derivative exists for all boundary points
x0 \in \scrG \cap \partial \Omega .

Remark 1 (boundary resolution). It is reasonable to expect that the minimum
distance between interior points and the boundary is roughly equal to the spatial
resolution, \delta \approx h. Since tan is nearly linear when d\theta is small, Theorem 1 with optimal
choice d\theta \approx h\alpha gives that hB = \scrO (h1+\alpha ). The constant \alpha is 1

2 for regular grids and
1
3 for point clouds; see Table 1.

2.2. Consistency and accuracy. We now derive bounds on the error of the
schemes and show that the schemes are consistent with an appropriate choice of d\theta in
terms of h. First, recall the fact that the first term for the error of a linear interpolant
is given by

u(x) - L(x) \approx 1

2

\sum 
\lambda j(x)(x - xj)

\sansT D2u(xj)(x - xj).

Therefore, the interpolation error at x0 + tpw is

E[Lp] := u(x0 + tpw) - Lp(x0 + tpw)

\approx 1

2

\sum 
i\in \scrS p

\lambda i
p (v

p
i  - tpw)

\sansT 
D2u(xi) (v

p
i  - tpw)

\leq 1

2
| | D2u| | \infty 

\sum 
i\in \scrS p

\lambda i
p| | v

p
i  - tpw| | 2.

The interpolation error at x0  - tmw is bounded above in a similar fashion.

Lemma 5 (consistency of first derivative scheme). The first derivative scheme
of Definition 1 is consistent with a formal discretization error of \scrO (h).
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Proof. The angular resolution error of the upwind first derivative scheme is

E[\scrD wu, d\theta ] =
E[Lp]

tp

\leq 1

2

\bigm\| \bigm\| D2u
\bigm\| \bigm\| 
\infty 

\sum 
i\in \scrS p

\lambda p
i

\| vpi  - tpw\| 
2

tp

\leq 1

2

\bigm\| \bigm\| D2u
\bigm\| \bigm\| 
\infty 

maxi,j\in \scrS p

\bigm\| \bigm\| vpi  - vpj
\bigm\| \bigm\| 2

mink\in \scrS p
\| vk\| 

.(3)

By construction, the maximum distance between any two points in a simplex of the
scheme is 2Cnh, and so the numerator here is bounded above by (2Cnh)

2. Further,
the minimum distance of a vector in the scheme is bounded below by the minimum
search radius r. That is,

min
k\in \scrS p,\scrS m

\| vk\| \geq r = Cnh

\biggl( 
 - 1 + cosec

\biggl( 
d\theta 

2

\biggr) \biggr) 
= \scrO 

\biggl( 
h

d\theta 

\biggr) 
.

With this in mind, (3) is bounded by

E[\scrD wu, d\theta ] \leq 
1

2

\bigm\| \bigm\| D2u
\bigm\| \bigm\| 
\infty 

(2Cnh)
2

r
= \scrO (hd\theta ).

Fixing d\theta constant as h\rightarrow 0 gives that the scheme is \scrO (h).
Lemma 6 (consistency of second derivative schemes). Using a nonsymmetric

stencil, with the optimal choice d\theta =
\bigl( 
h
2

\bigr) 1
3 , the second derivative scheme \scrD wwu of

Definition 2 is consistent, with a formal accuracy of \scrO (h 2
3 ). Moreover, on a sym-

metric stencil, with the optimal choice d\theta = h
1
2 , \scrD wwu is consistent, with a formal

accuracy of \scrO (h).
Proof. The angular resolution error of the second derivative scheme is

E[\scrD wwu, d\theta ] = 2

\biggl( 
E[Lp]

t2p + tptm
+

E[Lm]

t2m + tptm

\biggr) 
\leq 1

t2 - 

\Bigl( 
E[Lp] + E[Lm]

\Bigr) 
,

where t - = min\{ tp, tm\} . Arguing in a fashion similar to that in the first derivative,

E[\scrD wwu, d\theta ] \leq | | D2u| | \infty 
maxS\in \scrS p,\scrS m

maxi,j\in S | | vi  - vj | | 2

mink\in \scrS p,\scrS m
| | vk| | 2

\leq | | D2u| | \infty 
(2Cnh)

2

r2

= \scrO (d\theta 2),

since d\theta = \scrO (hr ) when d\theta is small.
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The total error of the scheme is the sum of angular and spatial resolution errors
(the spatial error arises from the finite difference series approximation and the angular
error from the linear interpolation). For the second derivative, in the nonsymmetric
case, the error of the scheme is

E[uww] = \scrO (R+ d\theta 2)

= \scrO 
\biggl( 

h

d\theta 
+ d\theta 2

\biggr) 
,

because R = \scrO ( h
d\theta ) when d\theta is small. In the symmetric case, the error is

E[\scrD wwu] = \scrO (R2 + d\theta 2)

= \scrO 

\Biggl( \biggl( 
h

d\theta 

\biggr) 2

+ d\theta 2

\Biggr) 
.

To ensure the scheme is consistent, d\theta must be chosen in terms of h such that the
error of the scheme goes to zero as the point cloud is refined. In the nonsymmetric

case, the best choice is d\theta =
\bigl( 
h
2

\bigr) 1
3 , which gives a formal accuracy of \scrO (h 2

3 ). When the

discretization is symmetric, the best choice of d\theta is
\surd 
h, and the scheme is formally

\scrO (h).
Remark 2. To guarantee the accuracy of the first order scheme, d\theta must remain

constant as h\rightarrow 0. In contrast, for the second order scheme to converge as h\rightarrow 0, it

must be that d\theta \sim 
\bigl( 
h
2

\bigr) 1
3 (when the grid is not regular). Thus, for the remainder of the

paper, when we speak of the angular resolution error, we mean the angular resolution
error for the second derivative scheme. We assume that the angular resolution error
for the first derivative scheme has been fixed to some reasonable constant, say \pi 

4 .

Remark 3. To ensure the existence of consistent schemes near the boundary, we
require that the minimal distance between interior and boundary points is greater
than the minimal search radius, \delta \geq r.

2.3. Practical considerations. We now outline a procedure for preprocessing
the point cloud \scrG , which will greatly speed the construction of elliptic schemes. The
algorithm takes a point cloud xi \in \scrG , i \in \scrI and returns a set \scrL i of candidate simplices
for each point. Each simplex \scrS k \in \scrL i, k = 1, . . . ,mi, is contained within the annulus
formed by the minimum and maximum search radii. Further, projecting \scrL i onto the
sphere forms a covering of the sphere. Thus, all possible directions are available.

The pseudocode of the algorithm is given in Algorithm 1. Note that we assume
the set of normalized neighbor points, denoted by V , is unique. If not, for each set
of nonunique points, keep only the smallest direction satisfying the minimum search
radius. This procedure is necessary, for example, on regular grids. We further assume
that the triangulation is well-shaped in the following sense. For any two vertices xi

and xj with \| xi  - xj\| < R in the triangulation, we assume that the graph distance
between xi and xj is bounded above by p(R).1

Now suppose the list of simplices

\scrL i = \{ Sk\} , k = 1, . . . ,mi,

1For example, for a Delaunay triangulation in two dimensions, p(R) = 4\pi R
3
\surd 
3
[KG92].
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Algorithm 1: Algorithm for preprocessing the point cloud.

Input : A point cloud xi \in \scrG in \BbbR n, i \in \scrI , and resolution error d\theta 
Output: A list of sets of simplices \scrL i, i \in \scrI , where \scrL i = \{ \scrS 1, . . . ,\scrS mi

\} 
1 \scrT \leftarrow triangulation(\scrG ) ; // \ttt \ttr \tti \tta \ttn \ttg \ttu \ttl \tta \ttt \tti \tto \ttn \tto \ttf \scrG 
2 A\leftarrow adj(\scrT ) ; // \ttA \ttd \ttj \tta \ttc \tte \ttn \ttc \tty \ttm \tta \ttt \ttr \tti \ttx \tto \ttf \scrT 
3 h\leftarrow supx\in \Omega miny\in \scrG \| x - y\| ; // \tts \ttp \tta \ttt \tti \tta \ttl \ttr \tte \tts \tto \ttl \ttu \ttt \tti \tto \ttn \tto \ttf \ttp \tto \tti \ttn \ttt \ttc \ttl \tto \ttu \ttd 

4 R\leftarrow Cnh
\bigl( 
1 + cosec

\bigl( 
d\theta 
2

\bigr) \bigr) 
; // \ttm \tta \ttx \tti \ttm \ttu \ttm \tts \tte \tta \ttr \ttc \tth \ttr \tta \ttd \tti \ttu \tts 

5 r \leftarrow Cnh
\bigl( 
 - 1 + cosec

\bigl( 
d\theta 
2

\bigr) \bigr) 
; // \ttm \tti \ttn \tti \ttm \ttu \ttm \tts \tte \tta \ttr \ttc \tth \ttr \tta \ttd \tti \ttu \tts 

6 p\leftarrow \lceil p(R)\rceil ; // \ttm \tta \ttx \tti \ttm \ttu \ttm \ttn \tte \tti \ttg \tth \ttb \tto \ttr \ttg \ttr \tta \ttp \tth \ttd \tti \tts \ttt \tta \ttn \ttc \tte 

7 P \leftarrow 
\sum p

k=1 A
k ;

8 foreach i \in \scrI do
9 \scrN \leftarrow \{ j | Pij \not = 0, i \not = j, r \leq \| xi  - xj\| \leq R\} ; // \ttN \tte \tti \ttg \tth \ttb \tto \ttr \tti \ttn \ttd \tti \ttc \tte \tts 

10 V \leftarrow 
\Bigl\{ 

xi - xj

\| xi - xj\| | j \in \scrN 
\Bigr\} 
; // \tta \tts \tts \ttu \ttm \tte \tte \ttl \tte \ttm \tte \ttn \ttt \tts \tto \ttf V \tta \ttr \tte \ttu \ttn \tti \ttq \ttu \tte 

11 C \leftarrow Convex hull of V ;
12 \scrL i \leftarrow \emptyset ;
13 foreach Facet \scrF of C do

// \scrF \tti \tts \tta \tts \tte \ttt \tto \ttf \tti \ttn \ttd \tti \ttc \tte \tts \tto \ttf \ttt \tth \tte \ttp \tto \tti \ttn \ttt \tts \tti \ttn V
14 \scrS \leftarrow \{ xk | k = \scrN j , j \in \scrF \} ;
15 \scrL i = \scrL i \cup \{ \scrS \} ;
16 end

17 end
18 return \{ \scrL i\} , i \in \scrI 

has been generated for a point xi. Given a direction w, it is straightforward to choose
\scrS p and \scrS m from \scrL i. Define

Vk =
\bigl[ 
v1 v2 . . . vn

\bigr] 
, with vk = xj  - xi, j \in \scrS k.

Then, by Farkas's lemma,

\scrS p =
\bigl\{ 
\scrS k \in \scrL i | V  - 1

k w \geq 0
\bigr\} 

and
\scrS m =

\bigl\{ 
\scrS k \in \scrL i | V  - 1

k w \leq 0
\bigr\} 
.

If these sets are not singletons (when w aligns with a grid direction), then choose one
representative element.

Remark 4. The proofs of section 2 relied on choosing the maximal and minimal
search radii to be R, r = Cnh(\pm 1 + cosec(d\theta 2 )), respectively. This choice makes the
proofs relatively straightforward. However, it is possible to still guarantee existence
and accuracy of the finite difference scheme with the narrower band of search radii
R, r = h(\pm 1+Cn cosec(

d\theta 
2 )). In practice, this set of search radii limits the appearance

of ``spikey"" stencils. We have found that it is best to choose a set of simplices whose
boundary has minimal surface area, thus limiting the amount of interpolation error.

3. Application: Eigenvalues of the Hessian. It is relatively straightforward
to employ \scrD wwu to find maximal and minimal eigenvalues of the Hessian about a
point xi \in \scrG . We will illustrate the procedure for the maximal eigenvalue, but the
procedure is analogous for the minimal eigenvalue.
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Define the finite difference operator \Lambda h,d\theta 
+ u(xi) := sup\| w\| =1\scrD wwu(xi) as the ap-

proximation of the maximum eigenvalue of the Hessian.
Actually computing \Lambda h,d\theta 

+ u(xi) reduces to an optimization problem. Define K(\scrS )
as the cone generated by a set S. We say that two cones overlap if their intersection
is nonempty. For each pair \{ \scrS p,\scrS m\} of overlapping antipodal simplices in \scrL i (with
K(\scrS p) \cap K( - \scrS m) \not = \emptyset ), one computes

P [\scrS m,\scrS p] = maximize
\lambda p,\lambda m

2

\Biggl[ \sum 
i\in \scrS p

\lambda i
pu(xi) - u(x0)

t2p + tptm
+

\sum 
i\in \scrS m

\lambda i
mu(xi) - u(x0)

t2m + tptm

\Biggr] 
subject to 0 \leq \lambda p, \lambda m \leq 1,

1\sansT \lambda p = 1,

1\sansT \lambda m = 1,

tp = | | Vp\lambda p| | ,
tm = | | Vm\lambda m| | .

The variables tp and tm are dummy variables. On a two-dimensional regular grid,
this simplifies to an optimization problem over one variable, which can be solved
analytically. (We note that in practice, we use an approximate method and do not
solve this optimization problem directly. See Remark 5.)

To find the maximal eigenvalue, one takes the maximal value computed over all
antipodal pairs:

\Lambda h,d\theta 
+ u(xi) = max

\scrS m,\scrS p\in \scrL i

K(\scrS m)\cap K( - \scrS p) \not =\emptyset 

P [\scrS m,\scrS p].(4)

The error of the scheme is

E[\Lambda h,d\theta 
+ ] =

\bigm| \bigm| \bigm| \bigm| max
\| v\| =1

v\sansT D2u(xi)v  - max
\| w\| =1

\scrD wwu(xi)

\bigm| \bigm| \bigm| \bigm| 
\leq max

\| w\| =1
w\sansT D2u(xi)w  - \scrD wwu(xi)

= \scrO (R+ d\theta 2)

on point clouds. As before, on a regular grid the error is \scrO (R2 + d\theta 2).

Remark 5. In cases other than on a regular grid in two dimensions, the optimiza-
tion problem (4) is difficult to implement. In practice, as a compromise we instead
compute finitely many directional derivative \scrD wiwi

u, i = 1, . . . , k. Define the effective
angular resolution through

cos d\theta e = max
i

min
j \not =i
\langle wi, wj\rangle .

Because the directional derivative may be taken off grid, one may choose sufficiently
many directions \{ wi\} such that d\theta e \leq d\theta 2. With this choice of directional derivatives,
the maximal eigenvalue of the Hessian can be defined as

\Lambda h,d\theta e
+ u(xi) = max

i
\scrD wiwiu(xi).

A simple computation shows that \Lambda h,d\theta e
+ also has accuracy \scrO (R+ d\theta 2).
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4. Solvers. Before continuing with specific numerical examples, we first detail
the numerical solver used. All solutions in section 5 were computed with a global
semismooth Newton method. Without modification, the Newton method fails, be-
cause the Newton method is guaranteed to be only a local method. However, the
Newton method achieves supralinear rates of convergence when the starting condi-
tion is close enough to the true solution.

Thus, to guarantee convergence, we use a global semismooth Newton method
[FP07, Chapter 8]. Let Fh[u] be a finite difference approximation of an elliptic op-
erator F [u]. After each Newton step, we check for a sufficient decrease in the energy\bigm\| \bigm\| Fh[u]

\bigm\| \bigm\| 2. If the Newton step does not decrease, the method switches to perform-
ing Euler steps, which is a guaranteed descent direction. We perform Euler steps
for the same amount of CPU time as for one Newton step, which was first proposed
in [Car17]. Because the Euler step is a guaranteed descent direction, the method is
globally convergent [FP07].

5. Numerical examples. Here we test our mesh-free finite difference method
on two examples.2 We demonstrate the convergence rates of the method and compare
our method with that of [Fro18]. For each method, error is reported as the difference
between the computed solution and the known analytic solution, measured in the
maximum norm (which is the appropriate norm for measuring convergence to the
viscosity solution [Obe06]).

5.1. Convex envelope. Our first example is the convex envelope of a function
g(x) on a convex domain \Omega . The convex envelope has been well studied. In [Obe07],
it was shown that the convex envelope solves the PDE\Biggl\{ 

max\{ u(x) - g(x), - \Lambda  - u(x)\} = 0, x \in \Omega ,

u(x) = g(x), x \in \partial \Omega ,

where \Lambda  - u(x) is the minimal eigenvalue of the Hessian. A stable, monotone con-
vergent finite difference scheme for computing the convex envelope was presented in
[Obe08a].

In what follows, we take g(x) to be the Euclidian distance to two points p1 and
p2,

g(x) = min
i=1,2
\{ \| x - pi\| \} ,

or, in other words, a double cone.
We start by computing the solution on the square [ - 1, 1]2, with p1,2 = (\pm 3

7 , 0).
We discretize \Lambda  - u(x) using our symmetric linear interpolation finite difference scheme
for eigenvalues of the Hessian, presented in section 3, and using the wide stencil
method developed in [Obe08a]. We call the latter a nearest neighbor scheme. For
both methods, we solved the equation using stencils with radii two and three. Figure
3b and Table 2 present convergence rates in the max norm. We can see that for
stencil radius two, angular resolution error arises quickly as h is decreased, and the
error plateaus. However, with stencil radius three, we get a better handle on the
convergence rate of the error. The standard wide stencil method achieves roughly
\scrO (h 2

3 ), while the symmetric linear interpolation method achieves \scrO (h), as expected.
Although the convergence rate of the linear interpolation method is better than

the nearest neighbor method, for the values of h we studied, the linear interpolation

2Our code, written in Python, is publicly available at https://github.com/cfinlay/pyellipticfd.

https://github.com/cfinlay/pyellipticfd
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Fig. 3. ( 3a): Convergence plot for the convex envelope on the unit disc with triangular mesh.
( 3b): Convergence plot for the convex envelope on a regular grid over the square [ - 1, 1]2.

method has higher absolute error. This is because in order to guarantee convergence,
the linear interpolation method must choose points greater than the minimum search
radius, whereas the standard wide stencil finite difference scheme may choose its
nearest neighbors. Thus, the spatial resolution error of the linear interpolation scheme
is generally higher than the nearest neighbor scheme.

We are also interested in the error of the schemes as a function of the angular
resolution. To this end, for fixed h, we compare the error of the schemes when the



FINITE DIFFERENCE SCHEMES A3111

Table 2
Errors and convergence order for the convex envelope.

Triangular mesh, interpolation
h N Error rate
8.6e - 2 427 0.16 --
5.9e - 2 785 0.13 0.61
4.0e - 2 1452 0.11 0.41
2.9e - 2 2713 0.09 0.58
2.0e - 2 5101 0.07 0.59
1.4e - 2 9674 0.05 1.07

Regular grid, interpolation, r = 2
h N Error rate
5.9e - 2 392 7.5e - 2 --
4.1e - 2 721 6.5e - 2 0.43
3.0e - 2 1288 5.5e - 2 0.51
2.1e - 2 2492 4.7e - 2 0.43
1.5e - 2 4616 4.3e - 2 0.26
1.0e - 2 9017 4.2e - 2 0.09

Regular grid, interpolation, r = 3
h N Error rate
5.9e - 2 528 9.0e - 2 --
4.2e - 2 913 8.4e - 2 0.20
3.0e - 2 1552 5.6e - 2 1.24
2.1e - 2 2868 3.4e - 2 1.45
1.5e - 2 5136 2.9e - 2 0.52
1.0e - 2 9757 2.2e - 2 0.68

Triangular mesh, [Fro18]
h N Error rate
8.6e - 2 427 0.17 --
5.0e - 2 810 0.16 0.18
4.1e - 2 1533 0.12 0.80
3.0e - 2 2908 0.11 0.30
2.0e - 2 5526 0.09 0.37
1.4e - 2 10542 0.08 0.47

Regular grid, Nearest neighbor, r = 2
h N Error rate
5.9e - 2 392 5.4e - 2 --
4.2e - 2 721 4.2e - 2 0.73
3.0e - 2 1288 4.0e - 2 0.15
2.1e - 2 2492 4.2e - 2 --0.13
1.5e - 2 4616 3.9e - 2 0.24
1.0e - 2 9017 4.0e - 2 --0.07

Regular grid, Nearest neighbor, r = 3
h N Error rate
5.9e - 2 528 5.4e - 2 --
4.2e - 2 913 2.7e - 2 2.0
3.0e - 2 1552 3.0e - 2 --0.29
2.1e - 2 2868 2.5e - 2 0.47
1.5e - 2 5136 1.9e - 2 0.98
1.0e - 2 9757 1.7e - 2 0.18

grid has been rotated off axis. Our results are presented in Figure 4. The mean of the
error of the linear interpolation scheme is higher than the nearest neighbor scheme,
due to the fact that the linear interpolation scheme chooses points further from the
stencil center. However, the variance of the error for the linear interpolation scheme is
much less than that of the nearest neighbor scheme. That is, the linear interpolation
scheme depends less on the angular resolution of the stencil relative to the rotation
of the grid.

Finally, we compare the linear interpolation scheme with Froese's scheme on the
unit disc, using an irregular triangulation of points. We generate the interior points
using the triangulation software DistMesh [PS04] and augment the boundary with
additional points to ensure a sufficient boundary resolution. Convergence rates are
presented in Figure 3a and Table 2. We can see that the linear interpolation scheme
achieves both the best rate of convergence and a better absolute error.

5.2. Pucci equation. Our next example is the Pucci equation,\Biggl\{ 
\alpha \Lambda +u(x) + \Lambda  - u(x) = 0, x \in \Omega ,

u(x) = g(x), x \in \partial \Omega ,
(5)

where \alpha is a positive scalar, and \Lambda  - u and \Lambda +u are, respectively, the minimal and
maximal eigenvalues of the Hessian. A convergent, monotone, and stable finite dif-
ference scheme for the Pucci equation was first developed in [Obe08b]. Following
[DG05, Obe08b], we take

u(x, y) =  - \rho 1 - \alpha , \rho (x, y) =
\sqrt{} 
(x+ 2)2 + (y + 2)2.

We compute solutions on the unit disc and the square [ - 1, 1]2.
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Fig. 4. Error of the numerical solutions of the convex envelope PDE on a regular grid, as a
function of rotation of the grid.

We discretized the square using a regular grid and use either the nearest neighbor
scheme or the symmetric finite difference interpolation scheme presented in section 3.
We use stencils of radius two or three. Errors and rates of convergence on the grid
are presented in Table 3 and in Figure 5b. Both methods achieve roughly the same
convergence rate before angular resolution error dominates. The nearest neighbor
scheme achieves a slightly better error rate.

As in the convex envelope example, we used DistMesh to triangulate the unit
disc. Error and convergence rates are shown Table 3 and Figure 5a. Both methods
achieve nearly \scrO (h) convergence rate, which is better than predicted by our analysis.
We hypothesize this is due to the fact that this example is smooth on the domain
studied.

5.2.1. Solver comparison. Finally, we performed a comparison of the three
solvers (semismooth Newton, Euler, and a combination of the two) in terms of CPU
time for the Pucci equation on a regular grid. Results are presented in Table 4 and
Figure 6.

As a function of number of grid points, the CPU time of Euler's method is roughly
\scrO (N2) for both methods, interpolation and nearest neighbor. For the interpolation
finite difference schemes, the CPU time of both semismooth Newton and the combina-
tion solver is nearly \scrO (N): we calculated a log-log line of best fit and found the CPU
time of the semismooth Newton and the combination solver to be about \scrO (N1.2).

Of all solvers and finite difference methods, the nearest neighbor finite difference
scheme with the combination solver achieves the best CPU time, followed by semi-
smooth Newton. However, as a function of number of grid points, the CPU time is
roughly \scrO (N1.75). This rate is worse than the interpolation finite difference scheme,
and so we expect on even larger grids that eventually the interpolation finite difference
method would be faster with either semismooth Newton or the combination solver.
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Table 3
Errors and convergence order for the Pucci equation.

Triangular mesh, interpolation
h N Error rate
8.6e - 2 427 1.3e - 3 --
5.0e - 2 785 8.3e - 4 1.16
4.1e - 2 1452 5.0e - 4 1.34
3.0e - 2 2713 3.5e - 4 1.09
2.0e - 2 5101 2.5e - 4 0.88
1.4e - 2 9674 1.6e - 4 1.29

Regular grid, interpolation, r = 2
h N Error rate
5.9e - 2 392 9.4e - 4 --
4.1e - 2 721 7.0e - 4 0.88
3.0e - 2 1288 5.8e - 4 0.58
2.1e - 2 2492 5.1e - 4 0.35
1.5e - 2 4616 4.8e - 4 0.19
1.0e - 2 9017 4.6e - 4 0.11

Regular grid, interpolation, r = 3
h N Error rate
5.9e - 2 528 1.0e - 3 --
4.1e - 2 913 8.4e - 4 2.20
3.0e - 2 1552 4.2e - 4 2.14
2.1e - 2 2868 3.1e - 4 0.86
1.5e - 2 5136 2.6e - 4 0.53
1.0e - 2 9757 2.3e - 4 0.30

Triangular mesh, [Fro18]
h N Error rate
8.6e - 2 427 1.5e - 3 --
5.0e - 2 810 2.1e - 3 --0.90
4.1e - 2 1533 1.2e - 3 1.60
3.0e - 2 2908 9.9e - 4 0.58
2.0e - 2 5526 5.3e - 4 1.57
1.4e - 2 10542 4.0e - 4 0.841

Regular grid, Nearest neighbor, r = 2
h N Error rate
5.9e - 2 392 4.8e - 4 --
4.1e - 2 721 3.6e - 4 0.83
3.0e - 2 1288 3.0e - 4 0.52
2.1e - 2 2492 2.8e - 4 0.28
1.5e - 2 4616 2.6e - 4 0.16
1.0e - 2 9017 2.6e - 4 0.07

Regular grid, Nearest neighbor, r = 3
h N Error rate
5.9e - 2 528 7.0e - 4 --
4.1e - 2 913 3.8e - 4 1.80
3.0e - 2 1552 2.4e - 4 1.45
2.1e - 2 2868 1.6e - 4 1.08
1.5e - 2 5136 1.3e - 4 0.62
1.0e - 2 9757 1.0e - 4 0.68
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Fig. 5. ( 5a): Convergence plot for the Pucci equation on the unit disc with triangular mesh.
( 5b): Convergence plot for the Pucci equation on a regular grid over the square [ - 1, 1]2.
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Table 4
Comparison of wall clock time of solvers for the Pucci equation (5) in two dimensions on a

regular grid. Time is reported in seconds. Results are for stencils of either radius r = 2 or r = 3.

Interpolation, r = 2
N 392 721 1288 2492 4616 9017
Euler 1.16 3.22 9.43 34.39 125.49 500.98
Newton 0.74 1.29 2.70 5.86 12.32 28.86
Combination 0.75 1.36 2.50 6.07 12.39 28.35

Nearest neighbor, r = 2
N 392 721 1288 2492 4616 9017
Euler 0.43 1.62 5.75 24.23 90.90 383.43
Newton 0.06 0.11 0.25 1.04 3.40 13.51
Combination 0.05 0.10 0.23 0.73 2.66 9.54

Interpolation, r = 3
N 528 913 1552 2868 5136 9757
Euler 1.54 3.11 7.73 26.17 86.05 317.98
Newton 1.47 2.59 4.66 9.54 19.29 45.68
Combination 1.39 2.56 5.70 11.97 23.12 53.77

Nearest neighbor, r = 3
N 528 913 1552 2868 5136 9757
Euler 0.84 3.28 11.93 50.90 195.14 823.99
Newton 0.08 0.16 0.37 1.35 4.63 17.66
Combination 0.07 0.14 0.36 0.95 3.07 10.61
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Fig. 6. CPU time taken to compute solution of the Pucci equation on a regular grid, with
stencil width r = 3, for both methods.
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