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Abstract
Training neural ODEs on large datasets has not
been tractable due to the necessity of allowing
the adaptive numerical ODE solver to refine its
step size to very small values. In practice this
leads to dynamics equivalent to many hundreds
or even thousands of layers. In this paper, we
overcome this apparent difficulty by introducing
a theoretically-grounded combination of both op-
timal transport and stability regularizations which
encourage neural ODEs to prefer simpler dynam-
ics out of all the dynamics that solve a problem
well. Simpler dynamics lead to faster convergence
and to fewer discretizations of the solver, consid-
erably decreasing wall-clock time without loss
in performance. Our approach allows us to train
neural ODE based generative models to the same
performance as the unregularized dynamics in just
over a day on one GPU, whereas unregularized dy-
namics can take up to 4-6 days of training time on
multiple GPUs. This brings neural ODEs signifi-
cantly closer to practical relevance in large-scale
applications.

1. Introduction
Recent research has bridged dynamical systems, a
workhorse of mathematical modeling, with neural networks,
the defacto function approximator for high dimensional data.
The great promise of this pairing is that the vast mathemat-
ical machinery stemming from dynamical systems can be
leveraged for modelling high dimensional problems in a
dimension-independent fashion.

Connections between neural networks and ordinary differ-
ential equations (ODEs) were almost immediately noted
after residual networks (He et al., 2016) were first proposed.
Indeed, it was observed that there is a striking similarity

1Department of Mathematics & Statistics, McGill Univer-
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Figure 1. Optimal transport map and a generic normalizing flow.

between ResNets and the numerical solution of ordinary
differential equations (Haber & Ruthotto, 2017; Ruthotto
& Haber, 2018; Chen et al., 2018; 2019). In these works,
deep networks are interepreted as discretizations of an un-
derlying dynamical system, where time indexes the “depth”
of the network and the parameters of the discretized dy-
namics are learned. An alternate viewpoint was taken by
neural ODEs (Chen et al., 2018), where the dynamics of
the neural network are approximated by an adaptive ODE
solver on the fly. This latter approach is quite compelling
as it does not require specifying the number of layers of the
network beforehand. Furthermore, it allows the learning of
homeomorphisms without any structural constraints on the
function computed by the residual block.

Neural ODEs have shown great promise in the physical sci-
ences (Köhler et al., 2019), in modeling irregular time series
(Rubanova et al., 2019), mean field games (Ruthotto et al.,
2019), and for generative modeling through normalizing
flows with free-form Jacobians (Grathwohl et al., 2019).
Recent work has even adapted neural ODEs to the stochas-
tic setting (Li et al., 2020). Despite these successes, some
hurdles still remain. In particular, although neural ODEs are
memory efficient, they can take a prohibitively long time to
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train, which is arguably one of the main stumbling blocks
towards their widespread adoption.

In this work we significantly reduce the training time of
neural ODEs by regularizing the learned dynamics. Without
further constraints on their dynamics, high dimensional neu-
ral ODEs may learn dynamics which minimize an objective
function, but which generate irregular solution trajectories.
See for example Figure 1b, where an unregularized flow
exhibits undesirable properties due to unnecessarily fluc-
tuating dynamics. As a solution, we propose two theoreti-
cally motivated regularization terms arising from an optimal
transport viewpoint of the learned map, which encourage
well-behaved dynamics (see 1b left). We empirically demon-
strate that proper regularization leads to significant speed-up
in training time without loss in performance, thus bringing
neural ODEs closer to deployment on large-scale datasets.
Our methods are validated on the problem of generative
modelling and density estimation, as an example of where
neural ODEs have shown impressive results, but could easily
be applied elsewhere.

In summary, our proposed regularized neural ODE (RN-
ODE) achieves the same performance as the baseline, while
reducing the wall-clock training time by many hours or even
days.

2. Neural ODEs & Continuous normalizing
flows

Neural ODEs simplify the design of deep neural networks
by formulating the forward pass of a deep network as the
solution of a ordinary differential equation. Initial work
along these lines was motivated by the similarity of the eval-
uation of one layer of a ResNet and the Euler discretization
of an ODE. Suppose the block in the t-th layer of a ResNet
is given by the function f(x, t; θ), where θ are the block’s
parameters. Then the evaluation of this layer of the ResNet
is simply xt+1 = xt + f(xt, t; θ). Now, instead consider
the following ODE {

ż = f(z, t; θ)

z(0) = x
(ODE)

The Euler discretization of this ODE with step-size τ is
zt+1 = zt + τ f(zt, t; θ), which is nearly identical to the
forward evaluation of the ResNet’s layer (setting step-size
τ = 1 gives equality). Armed with this insight, Chen et al.
(2018) suggested a method for training neural networks
based on (ODE) which abstain from a priori fixing step-size.
Chen et al.’s method is a continuous-time generalization of
residual networks, where the dynamics are generated by an
adaptive ODE solver that chooses step-size on-the-fly.

Because of their adaptive nature, neural ODEs can be more
flexible than ResNets in certain scenarios, such as when

trading between model speed and accuracy. Moreover given
a fixed network depth, the memory footprint of neural ODEs
is orders of magnitude smaller than a standard ResNet dur-
ing training. They therefore show great potential on a host
of applications, including generative modeling and density
estimation. An apparent drawback of neural ODEs is their
long training time: although a learned function f(· ; θ) may
generate a map that solves a problem particularly well, the
computational cost of numerically integrating (ODE) may
be so prohibitive that it is not tractable in practice. In this
paper we demonstrate this need not be so: with proper reg-
ularization, it is possible to learn f(· ; θ) so that (ODE) is
easily and quickly solved.

2.1. FFJORD

In density estimation and generative modeling, we wish
to estimate an unknown data distribution p(x) from which
we have drawn N samples. Maximum likelihood seeks to
approximate p(x) with a parameterized distribution pθ(x)
by minimizing the Kullback-Leibler divergence between the
two, or equivalently minimizing

J(pθ) = −
1

N

N∑
i=1

log pθ(xi) (1)

Continuous normalizing flows (Grathwohl et al., 2019; Chen
et al., 2018) parameterize pθ(x) using a vector field f :
Rd × R 7→ Rd as follows. Let z(x, T ) be the solution map
given by running the dynamics (ODE) for fixed time T .
Suppose we are given a known distribution q at final time T ,
such as the normal distribution. Change of variables tells us
that the distribution pθ(x) may be evaluated through

log pθ(x) = log q (z(x, T )) + log det | ∇ z(x, T )| (2)

Evaluating the log determinant of the Jacobian is difficult.
Grathwohl et al. (2019) exploit the following identity from
fluid mechanics (Villani, 2003, p 114)

∂

∂t
log det | ∇ z(x, t)| = div (f) (z(x, t), t)) (3)

where div (·) is the divergence operator1, div (f) (x) =∑
i ∂xi

fi(x). By the fundamental theorem of calculus, we
may then rewrite (2) in integral form

log pθ(x) = log q (z(x, T )) +

∫ T

0

div (f) (z(x, s), s) ds

(4)
Remark 2.1 (Divergence trace estimate). In (Grathwohl
et al., 2019), the divergence is estimated using an unbiased

1In the normalizing flow literature divergence is typically writ-
ten explicitly as the trace of the Jacobian, however we use div (·)
which is more common elsewhere.
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Figure 2. Log-likelihood (measured in bits/dim) on the validation set as a function of wall-clock time. Rolling average of three hours, with
90% confidence intervals.

Monte-Carlo trace estimate (Hutchinson, 1990; Avron &
Toledo, 2011),

div (f) (x) = E
ε∼N (0,1)

[
εT∇ f(x)ε

]
(5)

By using the substitution (4), the task of maximizing log-
likelihood shifts from choosing pθ to minimize (1), to learn-
ing the flow generated by a vector field f . This results in a
normalizing flow with a free-form Jacobian and reversible
dynamics, and was named FFJORD by Grathwohl et al..

2.2. The need for regularity

The vector field learned through FFJORD that maximizes
the log-likelihood is not unique, and raises troubling prob-
lems related to the regularity of the flow. For a simple
example, refer to Figure 1, where we plot two normaliz-
ing flows, both mapping a toy one-dimensional distribution
to the unit Gaussian, and where both maximize the log-
likelihood of exactly the same sample of particles. Figure
1a presents a “regular” flow, where particles travel in straight
lines that travel with constant speed. In contrast, Figure 1b
shows a flow that still maximizes the log-likelihood, but
that has undesirable properties, such as rapidly varying local
trajectories and non-constant speed.

From this simple motivating example, the need for regular-
ity of the vector field is apparent. Without placing demands
on the vector field f , it is entirely possible that the learned
dynamics will be poorly conditioned. This is not just a theo-
retical exercise: because the dynamics must be solved with
a numerical integrator, poorly conditioned dynamics will
lead to difficulties during numerical integration of (ODE).

Indeed, later we present results demonstrating a clear corre-
lation between the number of time steps an adaptive solver
takes to solve (ODE), and the regularity of f .

How can the regularity of the vector field be measured? One
motivating approach is to measure the force experienced by
a particle z(t) under the dynamics generated by the vector
field f , which is given by the total derivative of f with
respect to time

df(z, t)

dt
= ∇ f(z, t) · ż+ ∂f(z, t)

∂t
(6)

= ∇ f(z, t) · f(z, t) + ∂f(z, t)

∂t
(7)

Well conditioned flows will place constant, or nearly con-
stant, force on particles as they travel. Thus, in this work we
propose regularizing the dynamics with two penalty terms,
one term regularizing f and the other∇ f . The first penalty,
presented in Section 3, is a measure of the distance travelled
under the flow f , and can alternately be interpreted as the
kinetic energy of the flow. This penalty term is based off
of numerical methods in optimal transport, and encourages
particles to travel in straight lines with constant speed. The
second penalty term, discussed in Section 4, performs regu-
larization on the Jacobian of the vector field. Taken together
the two terms ensure that the force experienced by a particle
under the flow is constant or nearly so.

These two regularizers will promote dynamics that follow
numerically easy-to-integrate paths, thus greatly speeding
up training time.
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3. Optimal transport maps &
Benamou-Brenier

There is a remarkable similarity between density estimation
using continuous time normalizing flows, and the calcula-
tion of the optimal transport map between two densities
using the Benamou-Brenier formulation (Benamou & Bre-
nier, 2000; Santambrogio, 2015). While a review of optimal
transport theory is far outside the scope of this paper, here
we provide an informal summary of key ideas relevant to
continuous normalizing flows. The quadratic-cost optimal
transport map between two densities p(x) and q(x) is a map
z : Rd 7→ Rd minimizing the transport cost

M(z) =

∫
‖x− z(x)‖2p(x) dx (8)

subject to the constraint that
∫
A
q(y) dy =

∫
z−1(A)

p(x) dx,
in other words that the measure of any set A is preserved
under the map z. In a seminal work, Benamou & Brenier
(2000) showed that rather than solving for minimizers of (8)
directly, an indirect (but computationally efficient) method
is available by writing z(x, T ) as the solution map of a
flow under a vector field f (as in (ODE)) for time T , by
minimizing

min
f ,ρ

∫ T

0

∫
‖f(x, t)‖2ρt(x) dxdt (9a)

subject to
∂ρt
∂t

= −div (ρtf) , (9b)

ρ0(x) = p, (9c)
ρT (z) = q. (9d)

The objective function (9a) is a measure of the kinetic
energy of the flow. The constraint (9b) ensures probability
mass is conserved. The latter two constraints guarantee the
learned distribution agrees with the source p and target q.
Note that the kinetic energy (9a) is an upper bound on the
transport cost, with equality only at optimality.

The optimal flow f minimizing (9) has several particularly
appealing properties. First, particles induced by the opti-
mal flow f travel in straight lines. Second, particles travel
with constant speed. Moreover, under suitable conditions
on the source and target distributions, the optimal solution
map is unique (Villani, 2008). Therefore the solution map
z(x, t) is entirely characterized by the initial and final posi-
tions: z(x, t) = (1− t

T )z(x, 0)+
t
T z(x, T ). Consequently,

given an optimal f it is extraordinarily easy to solve (ODE)
numerically with minimal computational effort.

3.1. Linking normalizing flows to optimal transport

Now suppose we wish to minimize (9a), with q(z) a unit
normal distribution, and p(x) a data distribution, unknown
to us, but from which we have drawn N samples, and which

we model as a discrete distribution of Dirac masses. Enforc-
ing the initial condition is trivial because we have sampled
from p directly. The continuity equation need not be en-
forced because we are tracking a finite number of sampled
particles. However the final time condition ρT = q cannot
be implemented directly, since we do not have direct control
on the form ρT (z) takes. Instead, introduce a Kullback-
Leibler term to (9a) penalizing discrepancy between ρT and
q. This penalty term has an elegant simplification when p(x)
is modeled as a distribution of a finite number of masses,
as is done in generative modeling. Setting ρ0 = pθ a brief
derivation yields

KL(ρT ||q) = −
1

N

N∑
i=1

log pθ(xi) (10)

With this simplification (9a) becomes

Jλ(f) =
λ

N

N∑
i=1

∫ T

0

‖f(zi, t)‖2dt

− 1

N

N∑
i=1

log pθ(xi)

(11)

The connection between the Benamou-Brenier formulation
of the optimal transport problem on a discrete set of points
and continuous normalizing flows is apparent: the optimal
transport problem (11) is a regularized form of the continu-
ous normalizing flow optimization problem (1). We there-
fore expect that adding a kinetic energy regularization term
to FFJORD will encourage solution trajectories to prefer
straight lines with constant speed.

4. Unbiased Frobenius norm regularization of
the Jacobian

Refering to equation (7), one can see that even if f is regu-
larized to be small, via a kinetic energy penalty term, if the
Jacobian is large then the force experienced by a particle
may also still be large. As a result, the error of the numerical
integrator can be large, which may lead an adaptive solver
to make many function evaluations. This relationship is
apparent in Figure 3, where we empirically demonstrate the
correlation between the number of function evaluations of
f taken by the adaptive solver, and the size of the Jacobian
norm of f . The correlation is remarkably strong: dynamics
governed by a poorly conditioned Jacobian matrix require
the adaptive solver to take many small time steps.

Moreover, in particle-based methods, the kinetic energy
term forces dynamics to travel in straight lines only on
data seen during training, and so the regularity of the map
is only guaranteed on trajectories taken by training data.
The issue here is one of generalization: the map may be
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Algorithm 1 RNODE: regularized neural ODE training of
FFJORD

Input: data X = {xi}, i = 1, · · · , N , dynamics f(· ; θ),
final time T , regularization strength λJ and λK
initialize θ
while θ not converged do

Sample ε from standard normal distribution
Sample minibatch {xj} of size m from X
Set zj(0) = xj , lj(0) = Ej(0) = nj = 0
Numerically solve up to time T the system

żj = f(zj , t; θ)

l̇j = εT∇ f(zj , t; θ)ε

Ėj = ‖f(zj , t; θ)‖2

ṅj = ‖εT∇ f(zj , t; θ)‖2

Compute

L(θ) =
1

m

m∑
j=1

− log q(zj(T ))− lj(T )

+ λJnj(T ) + λKEj(T )

Compute∇θ L(θ) using the adjoint sensitivity method
by numerically solving the adjoint equations
Update θ ← θ − τ ∇θ L(θ)

end while

irregular on off-distribution or perturbed images, and cannot
be remedied by the kinetic energy term during training alone.
In the context of generalization, Jacobian regularization is
analagous to gradient regularization, which has been shown
to improve generalization (Drucker & LeCun, 1992; Novak
et al., 2018).

For these reasons, we also propose regularizing the Jacobian
through its Frobenius norm. The Frobenius norm ‖ · ‖F of a
real matrix A can be thought of as the `2 norm of the matrix
A vectorized

‖A‖F =

√∑
i,j

a2ij (12)

Equivalently it may be computed as

‖A‖F =
√
tr(AAT) (13)

and is the Euclidean norm of the singular values of a matrix.
In trace form, the Frobenius norm lends itself to estimation
using a Monte-Carlo trace estimator (Hutchinson, 1990;
Avron & Toledo, 2011). For real matrix B, an unbiased
estimate of the trace is given by

tr(B) = E
ε∼N (0,1)

[
εTBε

]
(14)

Figure 3. Number of function evaluations vs Jacobian Frobenius
norm of flows on CIFAR10 during training with vanilla FFJORD,
using an adaptive ODE solver.

where ε is drawn from a unit normal distribution. Thus the
squared Frobenius norm can be easily estimated by setting
B = AAT.

Turning to the Jacobian ∇ f(z) of a vector valued func-
tion f : Rd 7→ Rd, recall that the vector-Jacobian product
εT∇ f(z) may be quickly computed through reverse-mode
automatic differentiation. Therefore an unbiased Monte-
Carlo estimate of the Frobenius norm of the Jacobian is
readily available

‖∇ f(z)‖2F = E
ε∼N (0,1)

εT∇ f(z)∇ f(z)Tε (15)

= E
ε∼N (0,1)

‖εT∇ f(z)‖2 (16)

Conveniently, in the FFJORD framework the quantity
εT∇ f(z) must be computed during the estimate of the prob-
ability distribution under the flow, in the Monte-Carlo esti-
mate of the divergence term (5). Thus Jacobian Frobenius
norm regularization is available with essentially no extra
computational cost.

5. Algorithm description
All together, we propose modifying the objective function
of the FFJORD continuous normalizing flow (Grathwohl
et al., 2019) with the two regularization penalties of Sec-
tions 3 & 4. The proposed method is called RNODE, short
for regularized neural ODE. Pseudo-code of the method is
presented in Algorithm 1. The optimization problem to be



How To Train Your Neural ODE

Table 1. Log-likelihood (in bits/dim) and training time (in hours) on MNIST and CIFAR10. Our implementations report results after
100 epochs of training. Results in brackets are after an additional 100 epochs. For comparison we report both the results of the original
FFJORD paper and our own independent run of FFJORD (“vanilla”), as well as results reported in other flow-based generative modeling
papers. Our method (FFJORD with RNODE) has comparable log-likelihood as FFJORD but is significantly faster.

MNIST CIFAR10
BITS/DIM TIME BITS/DIM TIME

FFJORD, ORIGINAL (GRATHWOHL ET AL., 2019) 0.99 - 3.40 ≥ 5 DAYS
FFJORD, VANILLA 0.974 68.47 3.363 91.33
FFJORD RNODE (OURS) 0.973 24.37 3.398 (3.370) 31.84 (63.85)

REALNVP (DINH ET AL., 2017) 1.06 - 3.49 -
I-RESNET (BEHRMANN ET AL., 2019) 1.05 - 3.45 -
GLOW (KINGMA & DHARIWAL, 2018) 1.05 - 3.35 -
FLOW++ (HO ET AL., 2019) - - 3.28 / 3.09 -
RESIDUAL FLOW (CHEN ET AL., 2019) 0.970 - 3.280 -

solved is

min
f

1

Nd

N∑
i=1

− log q(z(xi, T ))

−
∫ T

0

div (f) (z(xi, s), s) ds

+λK

∫ T

0

‖f(z(xi, s), s)‖2 ds

+λJ

∫ T

0

‖∇z f(z(xi, s), s)‖2F ds (17)

where z(x, t) is determined by numerically solving (ODE).
Note that we take the mean over number of samples and
input dimension. This is to ensure that the choice of regu-
larization strength λK and λJ is independent of dimension
size and sample size.

To compute the three integrals and the log-probability under
q of z(x, T ) at final time T , we augment the dynamics of
the ODE with three extra terms, so that the entire system
solved by the numerical integrator is

ż = f(z, t)

l̇ = div (f) (z, t)

Ė = ‖f(z, t)‖2

ṅ = ‖∇ f(z, t)‖2F
z(0) = x, E(0) = l(0) = n(0) = 0

(RNODE)

Here E, l, and n are respectively the kinetic energy, the
log determinant of the Jacobian, and the integral of the
Frobenius norm of the Jacobian.

Both the divergence term and the Jacobian Frobenius norm
are approximated with Monte-Carlo trace estimates. In our
implementation, the Jacobian Frobenius estamate reuses
the computatian εT∇ f from the divergence estimate for
efficiency. We remark that the kinetic energy term only

requires the computation of a dot product. Thus just as
in FFJORD, our implementation scales linearly with the
number of time steps taken by the ODE solver.

Gradients of the objective function with respect to the net-
work parameters are computed using the adjoint sensitivity
method (Pontryagin et al., 1962; Chen et al., 2018).

6. Experimental design
Here we demonstrate the benefits of regularizing neural
ODEs on generative models for CIFAR10 (Krizhevsky &
Hinton, 2009) and MNIST (LeCun & Cortes, 1998), an ap-
plication where neural ODEs have shown strong empirical
performance. We use an identical neural architecture to
that of Grathwohl et al. (2019). The dynamics are defined
by a neural network f(z, t; θ(t)) : Rd × R 7→ Rd where
θ(t) is piecewise constant in time. On MNIST we use 10
pieces; CIFAR10 uses 14. Each piece is a 4-layer deep con-
volutional network comprised of 3x3 kernels and softplus
activation functions. Intermediary layers have 64 hidden
dimensions, and time t is concatenated to the spatial input
z. Weight matrices are chosen to imitate the multi-scale
architecture of Real NVP (Dinh et al., 2017), in that im-
ages are ‘squeezed’ via a permutation to halve image height
and width but quadruple the number of channels. Diver-
gence of f is estimated using the Gaussian Monte-Carlo
trace estimator with one sample of fixed noise per solver
time-step.

We train with a batch size of 200 for 100 epochs on a single
GPU2, using the Adam optimizer (Kingma & Ba, 2015) with
a learning rate of 1e−3. Data is preprocessed by perturbing
with uniform noise followed by the logit transform.

The reference implementation of FFJORD solves the dy-
namics using a Runge-Kutta 4(5) adaptive solver (Dormand

2GeForce RTX 2080 Ti
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Figure 4. Ablation study of the effect of the two regularizers, comparing two measures of flow regularity during training with a fixed
step-size ODE solver. Figure 4a: mean Jacobian Frobenius norm as a function of training epoch. Figure 4b: mean kinetic energy of the
flow as a function of training epoch.

& Prince, 1980) with error tolerances 1e−5 and initial step
size 1e−2. We have found that using less accurate solvers
on the reference implementation of FFJORD results in nu-
merically unstable training dynamics. In contrast, a simple
fixed-grid four stage Runge-Kutta solver suffices for RN-
ODE during training, using a step size of 0.25. The step
size was determined based on a simple heuristic of starting
with 0.5 and decreasing the step size by a factor of two
until the discrete dynamics were stable and achieved good
performance. We have also observed that RNODE improves
the training time of the adaptive solvers as well, requiring
many fewer function evaluations; however in Python we
have found that the fixed grid solver is typically quicker
at a specified number of function evaluations. At test time
RNODE uses the same adaptive solver as FFJORD.

We always initialize RNODE so that f(z, t) = 0; thus train-
ing begins with an initial identity map. The identity map
is an appropriate choice because it has zero transport cost
and zero Frobenius norm. Moreover the identity map is
trivially solveable for any numerical solver, thus training
begins without any effort required on the solver’s behalf.

On MNIST both MNIST and CIFAR10 we set the kinetic
energy regularization coefficient λK = 0.01. For the Jaco-
bian norm regularizer, on MNIST we set λJ = 0.01 and on
CIFAR10 we set λJ = 0.03.

7. Results
A comparison of RNODE against FFJORD and other flow-
based generative models is presented in Table 1. We report
both our running of “vanilla” FFJORD and the results as

originally reported in (Grathwohl et al., 2019). We highlight
that RNODE runs roughly 2.8x faster than FFJORD on both
datasets, while achieving or surpassing the performance of
FFJORD. This can further be seen in Figure 2 where we plot
bits per dimension ( − 1

d log2 p(x), a normalized measure of
log-likelihood) on the validation set as a function of training
epoch, for both datasets. Visual inspection of the sample
quality reveals no qualitative difference between regularized
and unregularized approaches; refer to Figure 5.

Surprisingly, our run of “vanilla” FFJORD achieved slightly
better performance than the results reported in (Grathwohl
et al., 2019). We suspect the discrepancy in performance
and run times between our implementation of FFJORD and
that of the original paper is due to batch size: Grathwohl
et al. use a batch size of 900 and train on six GPUs, whereas
we use a batch size of 200 and train on a single GPU.

7.1. Ablation study on MNIST

In Figure 4, we compare the effect of each regularizer by
itself on the training dynamics with the fixed grid ODE
solver on the MNIST dataset. Without any regularization at
all, training dynamics are numerically unstable and fail after
just under 50 epochs. This is precisely when the Jacobian
norm grows large; refer to Figure 4a. Figure 4a demonstrates
that each regularizer by itself is able to control the Jacobian
norm. The Jacobian regularizer is better suited to this task,
although it is interesting that the kinetic energy regularizer
also improves the Jacobian norm. Unsurprisingly Figure 4b
demonstrates the addition of the kinetic energy regularizer
encourages flows to travel a minimal distance. In addition,
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(a) real MNIST images (b) real CIFAR10 images

(c) vanilla FFJORD (d) vanilla FFJORD

(e) FFJORD RNODE (f) FFJORD RNODE

Figure 5. Quality of generated samples samples with and without regularization on MNIST, left, and CIFAR10, right.

we see that the Jacobian norm alone also has a beneficial
effect on the distance particles travel. Overall, the results
support our theoretical reasoning empirically.

8. Previous generative flows inspired by
optimal transport

Zhang et al. (2018) define a neural ODE flow where the
dynamics are given as the gradient of a scalar potential func-
tion. This interpretation has deep connections to optimal
transport: the optimal transport map is the gradient of a
convex potential function. Yang & Karniadakis (2019) con-
tinue along these lines, and define an optimal transport again
as a scalar potential gradient. Yang & Karniadakis (2019)
enforce that the learned map is in fact an optimal trans-
port map by penalizing their objective function with a term
measuring violations of the continuity equation. Ruthotto
et al. (2019) place generative flows within a broader context
of mean field games, and as an example consider a neural
ODE gradient potential flow solving the optimal transport
problem in up to 100 dimensions.

When a flow is the gradient of a scalar potential, the change
of variables formula (4) simplifies so that the divergence
term is replaced by the Laplacian of the scalar potential.
Although mathematically parsimonious and theoretically
well-motivated, we chose not to implement our flow as the
gradient of a scalar potential function due to computational
constraints: such an implementation would require ‘triple
backprop’ (twice to compute or approximate the Laplacian,
and once more for the parameter gradient). Ruthotto et al.
(2019) circumvented this problem by utilizing special struc-
tural properties of residual networks to efficiently compute

the Laplacian.

9. Discussion
In practice, RNODE is simple to implement, and only re-
quires augmenting the dynamics (ODE) with two extra
scalar equations (one for the kinetic energy term, and an-
other for the Jacobian penalty). In the setting of FFJORD,
because we may recycle intermediary terms used in the
divergence estimate, the computational cost of evaluating
these two extra equations is minimal. RNODE introduces
two extra hyperparameters related to the strength of the reg-
ularizers; we have found these required almost no tuning.

Although the problem of classification was not considered
in this work, we believe RNODE may offer similar im-
provements both in training time and the regularity of the
classifier learned. In the classification setting we expect the
computional overhead of calculating the two extra terms
should be marginal relative to gains made in training time.

10. Conclusion
We have presented RNODE, a regularized method for neu-
ral ODEs. This regularization approach is theoretically
well-motivated, and encourages neural ODEs to learn well-
behaved dynamics. As a consequence, numerical integration
of the learned dynamics is straight forward and relatively
easy, which means fewer discretizations are needed to solve
the dynamics. In many circumstances, this allows for the re-
placement of adaptive solvers with fixed grid solvers, which
can be more efficient during training. This leads to a sub-
stantial speed up in training time, while still maintaining
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the same empirical performance, opening the use of neural
ODEs to large-scale applications.
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